Coupled Data Assimilation and Ensemble Initialization with Application to Multiyear ENSO Prediction

Terence J. O’Kane CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

Search for other papers by Terence J. O’Kane in
Current site
Google Scholar
PubMed
Close
,
Paul A. Sandery CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

Search for other papers by Paul A. Sandery in
Current site
Google Scholar
PubMed
Close
,
Didier P. Monselesan CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

Search for other papers by Didier P. Monselesan in
Current site
Google Scholar
PubMed
Close
,
Pavel Sakov Bureau of Meteorology, Docklands, Melbourne, Victoria, Australia

Search for other papers by Pavel Sakov in
Current site
Google Scholar
PubMed
Close
,
Matthew A. Chamberlain CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

Search for other papers by Matthew A. Chamberlain in
Current site
Google Scholar
PubMed
Close
,
Richard J. Matear CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

Search for other papers by Richard J. Matear in
Current site
Google Scholar
PubMed
Close
,
Mark A. Collier CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia

Search for other papers by Mark A. Collier in
Current site
Google Scholar
PubMed
Close
,
Dougal T. Squire CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

Search for other papers by Dougal T. Squire in
Current site
Google Scholar
PubMed
Close
, and
Lauren Stevens CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia

Search for other papers by Lauren Stevens in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We develop and compare variants of coupled data assimilation (DA) systems based on ensemble optimal interpolation (EnOI) and ensemble transform Kalman filter (ETKF) methods. The assimilation system is first tested on a small paradigm model of the coupled tropical–extratropical climate system, then implemented for a coupled general circulation model (GCM). Strongly coupled DA was employed specifically to assess the impact of assimilating ocean observations [sea surface temperature (SST), sea surface height (SSH), and sea surface salinity (SSS), Argo, XBT, CTD, moorings] on the atmospheric state analysis update via the cross-domain error covariances from the coupled-model background ensemble. We examine the relationship between ensemble spread, analysis increments, and forecast skill in multiyear ENSO prediction experiments with a particular focus on the atmospheric response to tropical ocean perturbations. Initial forecast perturbations generated from bred vectors (BVs) project onto disturbances at and below the thermocline with similar structures to ETKF perturbations. BV error growth leads ENSO SST phasing by 6 months whereupon the dominant mechanism communicating tropical ocean variability to the extratropical atmosphere is via tropical convection modulating the Hadley circulation. We find that bred vectors specific to tropical Pacific thermocline variability were the most effective choices for ensemble initialization and ENSO forecasting.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0189.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Terence J. O’Kane, terence.okane@csiro.au

Abstract

We develop and compare variants of coupled data assimilation (DA) systems based on ensemble optimal interpolation (EnOI) and ensemble transform Kalman filter (ETKF) methods. The assimilation system is first tested on a small paradigm model of the coupled tropical–extratropical climate system, then implemented for a coupled general circulation model (GCM). Strongly coupled DA was employed specifically to assess the impact of assimilating ocean observations [sea surface temperature (SST), sea surface height (SSH), and sea surface salinity (SSS), Argo, XBT, CTD, moorings] on the atmospheric state analysis update via the cross-domain error covariances from the coupled-model background ensemble. We examine the relationship between ensemble spread, analysis increments, and forecast skill in multiyear ENSO prediction experiments with a particular focus on the atmospheric response to tropical ocean perturbations. Initial forecast perturbations generated from bred vectors (BVs) project onto disturbances at and below the thermocline with similar structures to ETKF perturbations. BV error growth leads ENSO SST phasing by 6 months whereupon the dominant mechanism communicating tropical ocean variability to the extratropical atmosphere is via tropical convection modulating the Hadley circulation. We find that bred vectors specific to tropical Pacific thermocline variability were the most effective choices for ensemble initialization and ENSO forecasting.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0189.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Terence J. O’Kane, terence.okane@csiro.au

Supplementary Materials

    • Supplemental Materials (PDF 1.97 MB)
Save
  • Ando, K., and Coauthors, 2017: Fifteen years progress of the TRITON array in the western Pacific and eastern Indian Oceans. J. Oceanogr., 73, 403426, https://doi.org/10.1007/s10872-017-0414-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns (1987). Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, D., and Coauthors, 2013: The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteor. Oceanogr. J., 63, 4164, https://doi.org/10.22499/2.6301.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boffetta, G., A. Crisanti, F. Paparella, A. Provenzale, and A. Vulpiani, 1998: Slow and fast dynamics in coupled systems: A time series analysis view. Physica D, 116, 301312, https://doi.org/10.1016/S0167-2789(97)00300-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonavita, M., L. Isaksen, and E. Holm, 2012: On the use of EDA background error variances in the ECMWF 4D-Var. Quart. J. Roy. Meteor. Soc., 138, 15401559, https://doi.org/10.1002/qj.1899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., A. Arribas, K. R. Milne, K. B. Robertson, and S. E. Beare, 2008: The MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 134, 703722, https://doi.org/10.1002/qj.234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 18931910, https://doi.org/10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgers, G., P. J. Van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 17191724, https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooley, J. W., P. A. W. Lewis, and P. D. Welch, 1969: The fast Fourier transform and its applications. IEEE Trans. Educ., 12, 2734, https://doi.org/10.1109/TE.1969.4320436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummings, J., and Coauthors, 2009: Ocean data assimilation systems for GODAE. Oceanography, 22 (3), 96109, https://doi.org/10.5670/oceanog.2009.69.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, https://doi.org/10.1175/JCLI3629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, G., H. Tian, L. Xiaoli, J. Cheng, J. Gong, and M. Jiao, 2012: A comparison of breeding and ensemble transform vectors for global ensemble generation. Acta Meteor. Sin., 26, 5261, https://doi.org/10.1007/s13351-012-0105-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dima, I. M., and J. M. Wallace, 2003: On the seasonality of the Hadley cell. J. Atmos. Sci., 60, 15221527, https://doi.org/10.1175/1520-0469(2003)060<1522:OTSOTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, E., N. Bhatti, J. Kinney, L. Pann, M. Penña, S.-C. Yang, E. Kalnay, and J. Hansen, 2004: RISE undergraduates find that regime changes in Lorenz’s model are predictable. Bull. Amer. Meteor. Soc., 85, 520524, https://doi.org/10.1175/BAMS-85-4-520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343367, https://doi.org/10.1007/s10236-003-0036-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., C. S. Frederiksen, and S. L. Osbrough, 2010: Seasonal ensemble prediction with a coupled ocean–atmosphere model. Aust. Meteor. Oceanogr. J., 59, 5366, https://doi.org/10.22499/2.5901.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2004: Fundamentals of Ocean Climate Models. Princeton University Press, 518 pp.

    • Crossref
    • Export Citation
  • Griffies, S. M., 2008: Elements of MOM4p1. GFDL Ocean Group Tech. Rep. 6, 446 pp., www.gfdl.noaa.gov.

  • Houtekamer, P. L., and F. Zhang, 2016: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 144, 44894532, https://doi.org/10.1175/MWR-D-15-0440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, https://doi.org/10.1016/j.physd.2006.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., and K. Ide, 2015: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part I: System description and 3D-hybrid results. Mon. Wea. Rev., 143, 433451, https://doi.org/10.1175/MWR-D-13-00351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., M. Balmaseda, D. Dee, K. Morgensen, and P. Janssen, 2016: A coupled data assimilation system for climate reanalysis. Quart. J. Roy. Meteor. Soc., 142, 6578, https://doi.org/10.1002/qj.2629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., P. J. Sheu, and I. S. Kang, 1994: Multiscale low-frequency circulation modes in the global atmosphere. J. Atmos. Sci., 51, 11691193, https://doi.org/10.1175/1520-0469(1994)051<1169:MLFCMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E., 1963: Deterministic non-periodic flow. J. Atmos. Sci., 20, 130141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, F., Z. Liu, S. Zhang, and Y. Liu, 2015: Strongly coupled data assimilation using leading averaged coupled covariance (LACC). Part II: CGCM applications. Mon. Wea. Rev., 143, 46454659, https://doi.org/10.1175/MWR-D-15-0088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, S. K. Behera, and T. Yamagata, 2008: Extended ENSO predictions using a fully coupled ocean–atmosphere model. J. Climate, 21, 8493, https://doi.org/10.1175/2007JCLI1412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., Y. Zhu, D. Hou, X. Zhou, and M. Peña, 2014: Ensemble transform with 3D rescaling initialization method. Mon. Wea. Rev., 142, 40534073, https://doi.org/10.1175/MWR-D-13-00367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, M. J., and Coauthors, 2015: Status and future of data assimilation in operational oceanography. J. Oper. Oceanogr., 8 (Suppl.), s28s48, https://doi.org/10.1080/1755876X.2015.1022055.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2014: Decadal climate prediction: An update from the trenches. Bull. Amer. Meteor. Soc., 95, 243267, https://doi.org/10.1175/BAMS-D-12-00241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, and H. Teng, 2016: Initialized decadal prediction for transition to positive phase of the interdecadal Pacific oscillation. Nat. Commun., 7, 11718, https://doi.org/10.1038/ncomms11718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R., M. Ghil, and F. Gauthiez, 1994: Advanced data assimilation in strongly nonlinear dynamical systems. J. Atmos. Sci., 51, 10371056, https://doi.org/10.1175/1520-0469(1994)051<1037:ADAISN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R., E. F. Carter Jr., and S. T. Blue, 1999: Data assimilation in nonlinear stochastic models. Tellus, 51A, 167194, https://doi.org/10.3402/tellusa.v51i2.12315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., and S. Yamane, 2007: Local ensemble transform Kalman filtering with an AGCM at a T159/L48 resolution. Mon. Wea. Rev., 135, 38413861, https://doi.org/10.1175/2007MWR1873.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mogensen, K., M. Alonso, and A. Weaver, 2012: The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System 4. ECMWF Tech. Memo. 668, 59 pp., https://www.ecmwf.int/en/elibrary/11174-nemovar-ocean-data-assimilation-system-implemented-ecmwf-ocean-analysis-system-4.

  • Molteni, F., R. Buizza, T. Palmer, and T. Petroliagis, 1996: The ECMWF Ensemble Prediction System: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73119, https://doi.org/10.1002/qj.49712252905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monselesan, D. P., T. J. O’Kane, J. S. Risbey, and J. Church, 2015: Internal climate memory in observations and models. Geophys. Res. Lett., 42, 12321242, https://doi.org/10.1002/2014GL062765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nadiga, B. T., and T. J. O’Kane, 2017: Low-frequency regime transitions and predictability of regimes in a barotropic model. Nonlinear and Stochastic Climate Dynamics, C. L. E. Franzke and T. J. O’Kane, Eds., Cambridge University Press, 136–158.

    • Crossref
    • Export Citation
  • Norwood, A., E. Kalnay, K. Ide, S.-C. Yang, and C. Wolfe, 2013: Lyapunov, singular and bred vectors in a multi-scale system: An empirical exploration of vectors related to instabilities. J. Phys., 46A, 254021, https://doi.org/10.1088/1751-8113/46/25/254021.

    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., and J. S. Frederiksen, 2008a: A comparison of statistical dynamical and ensemble prediction methods during blocking. J. Atmos. Sci., 65, 426447, https://doi.org/10.1175/2007JAS2300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J. and J. S. Frederiksen, 2008b: Comparison of statistical dynamical, square root and ensemble Kalman filters during blocking. Entropy, 10, 684721, https://doi.org/10.3390/e10040684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., and J. S. Frederiksen, 2010: Application of statistical dynamical turbulence closures to data assimilation. Phys. Scr., 142, 014042, https://doi.org/10.1088/0031-8949/2010/T142/014042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., M. Naughton, and Y. Xiao, 2008: The Australian Community Climate and Earth System Simulator global and regional ensemble prediction scheme. ANZIAM J., 50, C385C398, https://doi.org/10.21914/anziamj.v50i0.1421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., P. R. Oke, and P. A. Sandery, 2011: Predicting the East Australian Current. Ocean Modell., 38, 251266, https://doi.org/10.1016/j.ocemod.2011.04.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., D. P. Monselesan, and C. Maes, 2016a: On the stability and spatiotemporal variance distribution of salinity in the upper ocean. J. Geophys. Res. Oceans, 121, 41284148, https://doi.org/10.1002/2015JC011523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., J. S. Risbey, D. P. Monselesan, I. Horenko, and C. L. E. Franzke, 2016b: On the dynamics of persistent states and their secular trends in the waveguides of the Southern Hemisphere troposphere. Climate Dyn., 46, 35673597, https://doi.org/10.1007/s00382-015-2786-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., D. P. Monselesan, and J. S. Risbey, 2017: A multiscale reexamination of the Pacific–South American pattern. Mon. Wea. Rev., 145, 379402, https://doi.org/10.1175/MWR-D-16-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415428, https://doi.org/10.3402/tellusa.v56i5.14462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pazó, D., J. M. López, and M. A. Rodríguez, 2013: The geometric norm improves ensemble forecasting with the breeding method. Quart. J. Roy. Meteor. Soc., 139, 20212032, https://doi.org/10.1002/qj.2115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peña, M., and E. Kalnay, 2004: Separating fast and slow modes in coupled chaotic systems. Nonlinear Processes Geophys., 11, 319327, https://doi.org/10.5194/npg-11-319-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakov, P., 2017: EnKF-C user guide. arXiv.org, https://arxiv.org/abs/1410.1233.

  • Sakov, P., G. Evensen, and L. Bertino, 2010: Asynchronous data assimilation with the EnKF. Tellus, 62A, 2429, https://doi.org/10.1111/j.1600-0870.2009.00417.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandery, P., 2018: Data assimilation cycle length and observation impact in mesoscale ocean forecasting. Geosci. Model Dev., 11, 40114019, https://doi.org/10.5194/gmd-11-4011-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandery, P., and T. J. O’Kane, 2014: Coupled initialization in an ocean–atmosphere tropical cyclone prediction system. Quart. J. Roy. Meteor. Soc., 140, 8295, https://doi.org/10.1002/qj.2117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, https://doi.org/10.1038/nature13636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sluka, T. C., S. G. Penny, E. Kalnay, and T. Miyoshi, 2016: Assimilating atmospheric observations into the ocean using strongly coupled ensemble data assimilation. Geophys. Res. Lett., 43, 752759, https://doi.org/10.1002/2015GL067238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. M., S. Cusack, A. W. Colman, C. K. Folland, G. R. Harris, and J. M. Murphy, 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317, 796799, https://doi.org/10.1126/science.1139540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. M., R. Eade, and H. Pohlmann, 2013: A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Climate Dyn., 41, 33253338, https://doi.org/10.1007/s00382-013-1683-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Q., G. A. Vecchi, and A. J. Rosati, 2008: Predictability of the Indian Ocean sea surface temperature anomalies in the GFDL coupled model. Geophys. Res. Lett., 35, L02701, https://doi.org/10.1029/2007GL031966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131, 14851490, https://doi.org/10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tommasi, D., C. A. Stock, M. A. Alexander, X. Yang, A. Rosati, and G. A. Vecchi, 2017: Multi-annual climate predictions for fisheries: An assessment of skill of sea surface temperature forecasts for large marine ecosystems. Front. Mar. Sci., 4, 201, https://doi.org/10.3389/fmars.2017.00201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP: The breeding method. Mon. Wea. Rev., 125, 32973318, https://doi.org/10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, D. G., 1994: The South Pacific convergence zone (SPCZ): A review. Mon. Wea. Rev., 122, 19491970, https://doi.org/10.1175/1520-0493(1994)122<1949:TSPCZA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., L. Zhang, S.-K. Lee, L. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 model biases. Nat. Climate Change, 4, 201205, https://doi.org/10.1038/nclimate2118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 11401158, https://doi.org/10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., C. H. Bishop, and S. J. Julier, 2004: Which is better, an ensemble of positive–negative pairs or a centered spherical simplex ensemble? Mon. Wea. Rev., 132, 1591605, https://doi.org/10.1175/1520-0493(2004)132<1590:WIBAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, M., Z. Toth, R. Wobus, Y. Zhu, C. H. Bishop, and X. Wang, 2006: Ensemble transform Kalman filter-based ensemble perturbations in an operational global prediction system at NCEP. Tellus, 58A, 2844, https://doi.org/10.1111/j.1600-0870.2006.00159.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, M., Z. Toth, R. Wobus, and Y. Zhu, 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus, 60A, 6279, https://doi.org/10.1111/j.1600-0870.2007.00273.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, https://doi.org/10.1029/2009GL038710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., A. Rosati, T. L. Delworth, G. A. Vecchi, and F. Zheng, 2014: ENSO modulation: Is it decadally predictable. J. Climate, 27, 26672681, https://doi.org/10.1175/JCLI-D-13-00577.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolter, K., and M. Timlin, 2011: El Nino/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol., 31, 10741087, https://doi.org/10.1002/joc.2336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S.-C., E. Kalnay, M. Cai, and M. M. Rienecker, 2008: Bred vectors and tropical Pacific forecast errors in the NASA coupled general circulation model. Mon. Wea. Rev., 136, 13051326, https://doi.org/10.1175/2007MWR2118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., and Coauthors, 2013: A predictable AMO-like pattern in the GFDL fully coupled ensemble initialization and decadal forecasting system. J. Climate, 26, 650661, https://doi.org/10.1175/JCLI-D-12-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zagar, N., J. Tribbia, J. L. Anderson, K. Raeder, and D. T. Kleist, 2010: Diagnosis of systematic analysis increments by using normal modes. Quart. J. Roy. Meteor. Soc., 136, 6176, https://doi.org/10.1002/qj.533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., T. L. Delworth, X. Yang, R. G. Gudgel, L. Jia, G. A. Vecchi, and F. Zeng, 2017: Estimating decadal predictability for the Southern Ocean using the GFDL CM2.1 model. J. Climate, 30, 51875203, https://doi.org/10.1175/JCLI-D-16-0840.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., M. J. Harrison, A. Rosati, and A. Wittenberg, 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon. Wea. Rev., 135, 35413564, https://doi.org/10.1175/MWR3466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1031 306 42
PDF Downloads 793 195 16