On the Drivers of Decadal Variability of the Gulf Stream North Wall

Christopher L. P. Wolfe School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Christopher L. P. Wolfe in
Current site
Google Scholar
PubMed
Close
,
Sultan Hameed School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Sultan Hameed in
Current site
Google Scholar
PubMed
Close
, and
Lequan Chi School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Lequan Chi in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT

The Gulf Stream is bounded to the north by a strong temperature front known as the North Wall. The North Wall is subject to variability on a wide range of temporal and spatial scales—on interannual time scales, the dominant mode of variability is a longitudinally coherent north–south migration. North Wall variability since 1970 has been characterized by regular oscillations with a period of approximately nine years. This periodic variability, and its relationship to major modes of Atlantic climate variability, is examined in the frequency domain. The North Atlantic Oscillation (NAO) and the Atlantic meridional mode (AMM) both covary with the North Wall on decadal time scales. The NAO leads the North Wall by about one year, whereas the covariability between the North Wall and the AMM is synchronous (no lag). Covariability between the North Wall and the NAO is further examined in terms of the centers of action comprising the NAO: the Icelandic low and Azores high. It is found that the strength of the Icelandic low and its latitude as well as the strength of the Azores high play a role in decadal North Wall variability.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0212.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher L.P. Wolfe, christopher.wolfe@stonybrook.edu

ABSTRACT

The Gulf Stream is bounded to the north by a strong temperature front known as the North Wall. The North Wall is subject to variability on a wide range of temporal and spatial scales—on interannual time scales, the dominant mode of variability is a longitudinally coherent north–south migration. North Wall variability since 1970 has been characterized by regular oscillations with a period of approximately nine years. This periodic variability, and its relationship to major modes of Atlantic climate variability, is examined in the frequency domain. The North Atlantic Oscillation (NAO) and the Atlantic meridional mode (AMM) both covary with the North Wall on decadal time scales. The NAO leads the North Wall by about one year, whereas the covariability between the North Wall and the AMM is synchronous (no lag). Covariability between the North Wall and the NAO is further examined in terms of the centers of action comprising the NAO: the Icelandic low and Azores high. It is found that the strength of the Icelandic low and its latitude as well as the strength of the Azores high play a role in decadal North Wall variability.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0212.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher L.P. Wolfe, christopher.wolfe@stonybrook.edu

Supplementary Materials

    • Supplemental Materials (ZIP 31.46 KB)
Save
  • Amos, D. E., and L. H. Koopmans, 1963: Tables of the distribution of the coefficient of coherence for stationary bivariate Gaussian processes. Sandia Corporation Monogr. SCR-483, 327 pp.

    • Crossref
    • Export Citation
  • Bendat, J. S., and A. G. Piersol, 2010: Random Data: Analysis and Measurement Procedures. 4th ed., John Wiley and Sons, 640 pp.

    • Crossref
    • Export Citation
  • Bisagni, J. J., A. Gangopadhyay, and A. Sanchez-Franks, 2017: Secular change and inter-annual variability of the Gulf Stream position, 1993–2013, 70°–55°W. Deep-Sea Res. I, 125, 110, https://doi.org/10.1016/j.dsr.2017.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bower, A. S., M. S. Lozier, S. F. Gary, and C. W. Böning, 2009: Interior pathways of the North Atlantic meridional overturning circulation. Nature, 459, 243247, https://doi.org/10.1038/nature07979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bower, A. S., M. S. Lozier, and S. F. Gary, 2011: Export of Labrador Sea Water from the subpolar North Atlantic: A Lagrangian perspective. Deep-Sea Res. II, 58, 17981818, https://doi.org/10.1016/j.dsr2.2010.10.060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and Coauthors, 2013: World Ocean Database 2013. NOAA Atlas NESDIS 72, 209 pp., https://doi.org/10.7289/V5NZ85MT.

    • Crossref
    • Export Citation
  • Carter, G. C., 1987: Coherence and time delay estimation. Proc. IEEE, 75, 236255, https://doi.org/10.1109/PROC.1987.13723.

  • Chang, P., L. Ji, and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature, 385, 516518, https://doi.org/10.1038/385516a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., and D. P. Marshall, 2008: Gulf Stream separation in numerical ocean models. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 39–61, https://doi.org/10.1029/177GM05.

    • Crossref
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Climate Prediction Center, 2012: North Atlantic Oscillation. National Weather Services, accessed 2 June 2017, http://www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml.

  • Curry, R. G., and M. S. McCartney, 2001: Ocean gyre circulation changes associated with the North Atlantic Oscillation. J. Phys. Oceanogr., 31, 33743400, https://doi.org/10.1175/1520-0485(2001)031<3374:OGCCAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., P. van der Vaart, and J. Marshall, 2002: A diagnostic study of the role of remote forcing in tropical Atlantic variability. J. Climate, 15, 32803290, https://doi.org/10.1175/1520-0442(2002)015<3280:ADSOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • da Costa, E. D., and A. C. de Verdiere, 2002: The 7.7-year North Atlantic Oscillation. Quart. J. Roy. Meteor. Soc., 128, 797817, https://doi.org/10.1256/0035900021643692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., R. Zhang, and M. E. Mann, 2007: Decadal to centennial variability of the Atlantic from observations and models. Ocean Circulation: Mechanisms and Impacts, Geophys. Monogr., Vol. 173, Amer. Geophys. Union, 131–148, https://doi.org/10.1029/173GM10.

    • Crossref
    • Export Citation
  • Ebisuzaki, W., 1997: A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Climate, 10, 21472153, https://doi.org/10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1999: Sea surface temperature variability in the North Atlantic: Monthly to decadal time scales. Beyond El Niño: Decadal and Interdecadal Climate Variability, A. Navarra, Ed., Springer-Verlag, 25–48.

    • Crossref
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models, part II application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289305, https://doi.org/10.3402/tellusa.v29i4.11362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., P. Müller, and E. Zorita, 1997: A simple model of the decadal response to the ocean to stochastic wind forcing. J. Phys. Oceanogr., 27, 15331546, https://doi.org/10.1175/1520-0485(1997)027<1533:ASMOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., G. de Coëtlogon, T. M. Joyce, and S. Dong, 2001: Gulf Stream variability and ocean–atmosphere interactions. J. Phys. Oceanogr., 31, 35163529, https://doi.org/10.1175/1520-0485(2002)031<3516:GSVAOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gangopadhyay, A., P. Cornillon, and D. R. Watts, 1992: A test of the Parsons–Veronis hypothesis on the separation of the Gulf Stream. J. Phys. Oceanogr., 22, 12861301, https://doi.org/10.1175/1520-0485(1992)022<1286:ATOTPH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghil, M., and Coauthors, 2002: Advanced spectral methods for climatic time series. Rev. Geophys., 40, RG1003, https://doi.org/10.1029/2000RG000092.

  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, https://doi.org/10.1002/2013JC009067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., 2000: Decadal air–sea interaction in the North Atlantic based on observations and modeling results. J. Climate, 13, 11951219, https://doi.org/10.1175/1520-0442(2000)013<1195:DASIIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hameed, S., 2017: Atmospheric centers of action indices. Stony Brook University, accessed 25 July 2017, https://you.stonybrook.edu/coaindices.

  • Hameed, S., and S. Piontkovski, 2004: The dominant influence of the Icelandic low on the position of the Gulf Stream northwall. Geophys. Res. Lett., 31, L09303, https://doi.org/10.1029/2004GL019561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hameed, S., C. L. P. Wolfe, and L. Chi, 2018: Impact of the Atlantic meridional mode on Gulf Stream North Wall position. J. Climate, 31, 88758894, https://doi.org/10.1175/JCLI-D-18-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models part I. Theory. Tellus, 28, 473485, https://doi.org/10.3402/tellusa.v28i6.11316.

  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, https://doi.org/10.1126/science.269.5224.676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35, https://doi.org/10.1029/134GM01.

    • Crossref
    • Export Citation
  • Johns, W. E., and Coauthors, 2011: Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J. Climate, 24, 24292449, https://doi.org/10.1175/2010JCLI3997.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., and P. Robbins, 1996: The long-term hydrographic record at Bermuda. J. Climate, 9, 31213131, https://doi.org/10.1175/1520-0442(1996)009<3121:TLTHRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., C. Deser, and M. A. Spall, 2000: The relation between decadal variability of subtropical mode water and the North Atlantic Oscillation. J. Climate, 13, 25502569, https://doi.org/10.1175/1520-0442(2000)013<2550:TRBDVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., Y.-O. Kwon, and L. Yu, 2009: On the relationship between synoptic wintertime atmospheric variability and path shifts in the Gulf Stream and the Kuroshio Extension. J. Climate, 22, 31773192, https://doi.org/10.1175/2008JCLI2690.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., D. B. Chelton, and R. A. de Szoeke, 1997: The speed of observed and theoretical long extratropical planetary waves. J. Phys. Oceanogr., 27, 19461966, https://doi.org/10.1175/1520-0485(1997)027<1946:TSOOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lillibridge, J. L., III, and A. J. Mariano, 2013: A statistical analysis of Gulf Stream variability from 18+ years of altimetry data. Deep-Sea Res. II, 85, 127146, https://doi.org/10.1016/j.dsr2.2012.07.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and J. M. Lees, 1996: Robust estimation of background noise and signal detection in climatic time series. Climatic Change, 33, 409445, https://doi.org/10.1007/BF00142586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., H. Johnson, and J. Goodman, 2001: A study of the interaction of the North Atlantic Oscillation with ocean circulation. J. Climate, 14, 13991421, https://doi.org/10.1175/1520-0442(2001)014<1399:ASOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, R. L., 2004: Annual and decadal variability in the western subtropical North Atlantic: Signal characteristics and sampling methodologies. Prog. Oceanogr., 62, 3366, https://doi.org/10.1016/j.pocean.2004.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moron, V., R. Vautard, and M. Ghil, 1998: Trends, interdecadal and interannual oscillations in global sea-surface temperatures. Climate Dyn., 14, 545569, https://doi.org/10.1007/s003820050241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Center for Atmospheric Research, 2017: The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (PC-based). NCAR, accessed 18 February 2018, https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based.

  • Nigam, S., A. Ruiz-Barradas, and L. Chafik, 2018: Gulf Stream excursions and sectional detachments generate the decadal pulses in the Atlantic multidecadal oscillation. J. Climate, 31, 28532870, https://doi.org/10.1175/JCLI-D-17-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nobre, P., and J. Shulka, 1996: Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Climate, 9, 24642479, https://doi.org/10.1175/1520-0442(1996)009<2464:VOSSTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nye, J. A., T. M. Joyce, Y.-O. Kwon, and J. S. Link, 2011: Silver hake tracks changes in northwest Atlantic circulation. Nat. Commun., 2, 412, https://doi.org/10.1038/ncomms1420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peña-Molino, B., and T. M. Joyce, 2008: Variability in the slope water and its relation to the Gulf Stream path. Geophys. Res. Lett., 35, L03606, https://doi.org/10.1029/2007GL032183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Percival, D. B., and A. T. Walden, 1993: Spectral Analysis for Physical Applications. Cambridge University Press, 583 pp.

    • Crossref
    • Export Citation
  • Pérez-Hernández, M. D., and T. M. Joyce, 2014: Two modes of Gulf Stream variability revealed in the last two decades of satellite altimeter data. J. Phys. Oceanogr., 44, 149163, https://doi.org/10.1175/JPO-D-13-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., T. K. McKee, D. J. Torres, and S. A. Harrington, 1999: Mean structure and interannual variability of the slopewater system south of Newfoundland. J. Phys. Oceanogr., 29, 25412558, https://doi.org/10.1175/1520-0485(1999)029<2541:MSAIVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, C.-G., and Coauthors, 1939: Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res., 2, 3855, https://doi.org/10.1357/002224039806649023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, T., 1999: On gyre interactions. Deep-Sea Res. II, 46, 139164, https://doi.org/10.1016/S0967-0645(98)00095-2.

  • Rossby, T., and R. L. Benway, 2000: Slow variations in mean path of the Gulf Stream east of Cape Hatteras. Geophys. Res. Lett., 27, 117120, https://doi.org/10.1029/1999GL002356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, T., C. N. Flagg, and K. Donohue, 2005: Interannual variations in upper-ocean transport by the Gulf Stream and adjacent waters between New Jersey and Bermuda. J. Mar. Res., 63, 203226, https://doi.org/10.1357/0022240053693851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, T., C. N. Flagg, and K. Donohue, 2010: On the variability of Gulf Stream transport from seasonal to decadal timescales. J. Mar. Res., 68, 503522, https://doi.org/10.1357/002224010794657128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanchez-Franks, A., S. Hameed, and R. E. Wilson, 2016: The Icelandic low as a predictor of the Gulf Stream North Wall position. J. Phys. Oceanogr., 46, 817826, https://doi.org/10.1175/JPO-D-14-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, F., 1986: Explosive cyclogenesis over the west-central North Atlantic Ocean, 1981–84. Part I: Composite structure and mean behavior. Mon. Wea. Rev., 114, 17811794, https://doi.org/10.1175/1520-0493(1986)114<1781:ECITWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., and N. Schneider, 2011: Interannual to decadal Gulf Stream variability in an eddy-resolving ocean model. Ocean Modell., 39, 209219, https://doi.org/10.1016/j.ocemod.2011.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simonnet, E., M. Ghil, K. Ide, R. Temam, and S. Wang, 2003: Low-frequency variability in shallow-water models of the wind-driven ocean circulation. Part II: Time-dependent solution. J. Phys. Oceanogr., 33, 729752, https://doi.org/10.1175/1520-0485(2003)33<729:LVISMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simonnet, E., M. Ghil, and H. Dijkstra, 2005: Homoclinic bifurcations in the quasi-geostrophic double-gyre circulation. J. Mar. Res., 63, 931956, https://doi.org/10.1357/002224005774464210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. C., R. W. Houghton, R. G. Fairbanks, and D. G. Mountain, 2001: Interannual variability of boundary fluxes and water mass properties in the Gulf of Maine and on Georges Bank: 1993–1997. Deep-Sea Res. II, 48, 3770, https://doi.org/10.1016/S0967-0645(00)00081-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 1996: Dynamics of the Gulf Stream/deep western boundary current crossover. Part II: Low-frequency internal oscillations. J. Phys. Oceanogr., 26, 21692182, https://doi.org/10.1175/1520-0485(1996)026<2169:DOTGSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., V. Pavan, and R. Bojariu, 2000: Is the North Atlantic Oscillation a random walk? Int. J. Climatol., 20, 118, https://doi.org/10.1002/(SICI)1097-0088(200001)20:1<1::AID-JOC456>3.0.CO;2-P.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and M. R. Allen, 1997: Decadal predictability of North Atlantic sea surface temperature and climate. Nature, 388, 563567, https://doi.org/10.1038/41523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, A. H., and J. A. Stephens, 1980: Latitudinal displacements of the Gulf Stream (1966 to 1977) and their relation to changes in temperature and zooplankton abundance in the NE Atlantic. Oceanol. Acta, 3, 145149.

    • Search Google Scholar
    • Export Citation
  • Taylor, A. H., and J. A. Stephens, 1998: The North Atlantic Oscillation and the latitude of the Gulf Stream. Tellus, 50A, 134142, https://doi.org/10.3402/tellusa.v50i1.14517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, A. H., and A. Gangopadhyay, 2001: A simple model of interannual displacements of the Gulf Stream. J. Geophys. Res., 106, 13 84913 860, https://doi.org/10.1029/1999JC000147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, A. H., M. B. Jordan, and J. A. Stephens, 1998: Gulf Stream shifts following ENSO events. Nature, 393, 638, https://doi.org/10.1038/31380.

  • Thomson, D. J., 1982: Spectrum estimation and harmonic analysis. Proc. IEEE, 70, 10551096, https://doi.org/10.1109/PROC.1982.12433.

  • Vimont, D., 2015: Meridional mode website. University of Wisconsin–Madison, accessed 2 June 2017, http://www.aos.wisc.edu/~dvimont/MModes/Home.html.

  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

    • Crossref
    • Export Citation
  • Watanabe, M., M. Kimoto, T. Nitta, and M. Kachi, 1999: A comparison of decadal climate oscillations in the North Atlantic detected in observations and a coupled GCM. J. Climate, 12, 29202940, https://doi.org/10.1175/1520-0442(1999)012<2920:ACODCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watelet, S., J.-M. Beckers, and A. Barth, 2017: Reconstruction of the Gulf Stream from 1940 to the present and correlation with the North Atlantic Oscillation. J. Phys. Oceanogr., 47, 27412754, https://doi.org/10.1175/JPO-D-17-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1999: The interpretation of short climate records, with comments on the North Atlantic and Southern Oscillations. Bull. Amer. Meteor. Soc., 80, 245255, https://doi.org/10.1175/1520-0477(1999)080<0245:TIOSCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 433 157 18
PDF Downloads 436 158 23