Aerosol Direct Radiative and Cloud Adjustment Effects on Surface Climate over Eastern China: Analyses of WRF Model Simulations

Yangyang Song Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York

Search for other papers by Yangyang Song in
Current site
Google Scholar
PubMed
Close
,
Guoxing Chen Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York

Search for other papers by Guoxing Chen in
Current site
Google Scholar
PubMed
Close
, and
Wei-Chyung Wang Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York

Search for other papers by Wei-Chyung Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The WRF-simulated changes in clouds and climate due to the increased anthropogenic aerosols for the summers of 2002–08 (vs the 1970s) over eastern China were used to offline calculate the radiative forcings associated with aerosol–radiation (AR) and aerosol–cloud–radiation (ACR) interactions, which subsequently facilitated the interpretation of surface temperature changes. During this period, the increases of aerosol optical depth (ΔAOD) averaged over eastern China range from 0.18 in 2004 to 0.26 in 2007 as compared to corresponding cases in the 1970s, and the multiyear means (standard deviations) of AR and ACR forcings at the surface are −6.7 (0.58) and −3.5 (0.63) W m−2, respectively, indicating the importance of cloud changes in affecting both the aerosol climate forcing and its interannual variation. The simulated mean surface cooling is 0.35°C, dominated by AR and ACR with a positive (cooling) feedback associated with changes in meteorology (~10%), and two negative (warming) feedbacks associated with decreases in latent (~70%) and sensible (~20%) heat fluxes. More detailed spatial characteristics were analyzed using ensemble simulations for the year 2008. Three regions—Jing-Jin-Ji (ΔAOD ~ 0.63), Sichuan basin (ΔAOD ~ 0.31), and middle Yangtze River valley (ΔAOD ~ 0.26)—at different climate regimes were selected to investigate the relative roles of AR and ACR. While the AR forcing is closely related to ΔAOD values, the ACR forcing presents different regional characteristics owing to cloud changes. In addition, the surface heat flux feedbacks are also different between regions. The study thus illustrates that ACR forcing is useful as a diagnostic parameter to unravel the complexity of climate change to aerosol forcing over eastern China.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wei-Chyung Wang, wcwang@albany.edu

Abstract

The WRF-simulated changes in clouds and climate due to the increased anthropogenic aerosols for the summers of 2002–08 (vs the 1970s) over eastern China were used to offline calculate the radiative forcings associated with aerosol–radiation (AR) and aerosol–cloud–radiation (ACR) interactions, which subsequently facilitated the interpretation of surface temperature changes. During this period, the increases of aerosol optical depth (ΔAOD) averaged over eastern China range from 0.18 in 2004 to 0.26 in 2007 as compared to corresponding cases in the 1970s, and the multiyear means (standard deviations) of AR and ACR forcings at the surface are −6.7 (0.58) and −3.5 (0.63) W m−2, respectively, indicating the importance of cloud changes in affecting both the aerosol climate forcing and its interannual variation. The simulated mean surface cooling is 0.35°C, dominated by AR and ACR with a positive (cooling) feedback associated with changes in meteorology (~10%), and two negative (warming) feedbacks associated with decreases in latent (~70%) and sensible (~20%) heat fluxes. More detailed spatial characteristics were analyzed using ensemble simulations for the year 2008. Three regions—Jing-Jin-Ji (ΔAOD ~ 0.63), Sichuan basin (ΔAOD ~ 0.31), and middle Yangtze River valley (ΔAOD ~ 0.26)—at different climate regimes were selected to investigate the relative roles of AR and ACR. While the AR forcing is closely related to ΔAOD values, the ACR forcing presents different regional characteristics owing to cloud changes. In addition, the surface heat flux feedbacks are also different between regions. The study thus illustrates that ACR forcing is useful as a diagnostic parameter to unravel the complexity of climate change to aerosol forcing over eastern China.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wei-Chyung Wang, wcwang@albany.edu
Save
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and W.-C. Wang, 2016: Aerosol–stratocumulus–radiation interactions over the southeast Pacific: Implications to the underlying air–sea coupling. J. Atmos. Sci., 73, 27592771, https://doi.org/10.1175/JAS-D-15-0277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., W.-C. Wang, and J.-P. Chen, 2015: Aerosol–stratocumulus–radiation interactions over the southeast Pacific. J. Atmos. Sci., 72, 26122621, https://doi.org/10.1175/JAS-D-14-0319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., J. Yang, Q. Bao, and W.-C. Wang, 2018a: Intraseasonal responses of the East Asia summer rainfall to anthropogenic aerosol climate forcing. Climate Dyn., 51, 39853998, https://doi.org/10.1007/s00382-017-3691-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., W.-C. Wang, and J.-P. Chen, 2018b: Circulation responses to regional aerosol climate forcing in summer over East Asia. Climate Dyn., 51, 39733984, https://doi.org/10.1007/s00382-018-4267-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, C.-T., W.-C. Wang, and J.-P. Chen, 2007: A modelling study of aerosol impacts on cloud microphysics and radiative properties. Quart. J. Roy. Meteor. Soc., 133, 283297, https://doi.org/10.1002/qj.25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, C.-T., W.-C. Wang, and J.-P. Chen, 2010: Simulation of the effects of increasing cloud condensation nuclei on mixed-phase clouds and precipitation of a front system. Atmos. Res., 96, 461476, https://doi.org/10.1016/j.atmosres.2010.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., L. R. Leung, D. Rosenfeld, Q. Chen, Z. Li, J. Zhang, and H. Yan, 2013: Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proc. Natl. Acad. Sci. USA, 110, E4581E4590, https://doi.org/10.1073/pnas.1316830110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., Y. Wang, D. Rosenfeld, and X. Liu, 2016: Review of aerosol–cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci., 73, 42214252, https://doi.org/10.1175/JAS-D-16-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gierens, K., U. Schumann, M. Helten, H. Smit, and P. H. Wang, 2000: Ice-supersaturated regions and subvisible cirrus in the northern midlatitude upper troposphere. J. Geophys. Res., 105, 22 74322 753, https://doi.org/10.1029/2000JD900341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, L., E. Highwood, L. Shaffrey, and A. Turner, 2013: The effect of regional changes in anthropogenic aerosols on rainfall of the East Asian summer monsoon. Atmos. Chem. Phys., 13, 15211534, https://doi.org/10.5194/acp-13-1521-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., and T. Zhou, 2015: Seasonal variation and physical properties of the cloud system over southeastern China derived from CloudSat products. Adv. Atmos. Sci., 32, 659670, https://doi.org/10.1007/s00376-014-4070-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., R. E. Dickinson, and W. L. Chameides, 2006: Impact of aerosol indirect effect on surface temperature over East Asia. Proc. Natl. Acad. Sci. USA, 103, 43714376, https://doi.org/10.1073/pnas.0504428103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Jiang, Y., X. Liu, X.-Q. Yang, and M. Wang, 2013: A numerical study of the effect of different aerosol types on East Asian summer clouds and precipitation. Atmos. Environ., 70, 5163, https://doi.org/10.1016/j.atmosenv.2012.12.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., H. Morrison, J. A. Curry, D. Baumgardner, and P. Lawson, 2006: High supersaturation and modes of ice nucleation in thin tropopause cirrus: Simulation of the 13 July 2002 Cirrus Regional Study of Tropical Anvils and Cirrus Layers case. J. Geophys. Res., 111, D02201, https://doi.org/10.1029/2004JD005235.

    • Search Google Scholar
    • Export Citation
  • Klimont, Z., S. J. Smith, and J. Cofala, 2013: The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environ. Res. Lett., 8, 014003, https://doi.org/10.1088/1748-9326/8/1/014003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamarque, J. F., and Coauthors, 2012: CAM-chem: Description and evaluation of interactive atmospheric chemistry in the Community Earth System Model. Geosci. Model Dev., 5, 369411, https://doi.org/10.5194/gmd-5-369-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., and Coauthors, 2017: India is overtaking China as the world’s largest emitter of anthropogenic sulfur dioxide. Sci. Rep., 7, 14304, https://doi.org/10.1038/s41598-017-14639-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., W.-C. Wang, Z. Sun, G. Wu, H. Liao, and Y. Liu, 2014: Decadal variation of East Asian radiative forcing due to anthropogenic aerosols during 1850–2100, and the role of atmospheric moisture. Climate Res., 61, 241257, https://doi.org/10.3354/cr01236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S., T. Wang, F. Solmon, B. Zhuang, H. Wu, M. Xie, Y. Han, and X. Wang, 2016: Impact of aerosols on regional climate in southern and northern China during strong/weak East Asian summer monsoon years. J. Geophys. Res. Atmos., 121, 40694081, https://doi.org/10.1002/2015JD023892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., R. Yu, Y. Xu, and X. Zhang, 2004: Spatial distribution and seasonal variation of cloud over China based on ISCCP data and surface observations. J. Meteor. Soc. Japan, 82, 761773, https://doi.org/10.2151/jmsj.2004.761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., K. H. Lee, Y. Wang, J. Xin, and W. M. Hao, 2010: First observation-based estimates of cloud-free aerosol radiative forcing across China. J. Geophys. Res., 115, D00K18, https://doi.org/10.1029/2009JD013306.

    • Search Google Scholar
    • Export Citation
  • Li, Z., and Coauthors, 2016: Aerosol and monsoon climate interactions over Asia. Rev. Geophys., 54, 866929, https://doi.org/10.1002/2015RG000500.

    • Crossref
    • Search Google Scholar
  • Liu, X., X. Xie, Z.-Y. Yin, C. Liu, and A. Gettelman, 2011: A modeling study of the effects of aerosols on clouds and precipitation over East Asia. Theor. Appl. Climatol., 106, 343354, https://doi.org/10.1007/s00704-011-0436-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A., and A. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR, 151, e187.

    • Search Google Scholar
    • Export Citation
  • Pan, Z., W. Gong, F. Mao, J. Li, W. Wang, C. Li, and Q. Min, 2015: Macrophysical and optical properties of clouds over East Asia measured by CALIPSO. J. Geophys. Res. Atmos., 120, 11 65311 668, https://doi.org/10.1002/2015JD023735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. J., J. van Aardenne, Z. Klimont, R. J. Andres, A. Volke, and S. Delgado Arias, 2011: Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos. Chem. Phys., 11, 11011116, https://doi.org/10.5194/acp-11-1101-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., T. Zhou, and Y. Qian, 2014: Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys. Res. Lett., 41, 596603, https://doi.org/10.1002/2013GL058705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spichtinger, P., K. Gierens, and W. Read, 2003: The global distribution of ice-supersaturated regions as seen by the Microwave Limb Sounder. Quart. J. Roy. Meteor. Soc., 129, 33913410, https://doi.org/10.1256/qj.02.141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273, https://doi.org/10.1175/JCLI-3243.1.

  • Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, https://doi.org/10.1038/nature08281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W. K., J. P. Chen, Z. Q. Li, C. Wang, and C. D. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, https://doi.org/10.1029/2011RG000369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thiébaux, J., E. Rogers, W. Wang, and B. Katz, 2003: A new high-resolution blended real-time global sea surface temperature analysis. Bull. Amer. Meteor. Soc., 84, 645656, https://doi.org/10.1175/BAMS-84-5-645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsai, I. C., W.-C. Wang, H.-H. Hsu, and W.-L. Lee, 2016: Aerosol effects on summer monsoon over Asia during 1980s and 1990s. J. Geophys. Res. Atmos., 121, 11 76111 776, https://doi.org/10.1002/2016JD025388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., J. H. Jiang, and H. Su, 2015: Atmospheric responses to the redistribution of anthropogenic aerosols. J. Geophys. Res. Atmos., 120, 96259641, https://doi.org/10.1002/2015JD023665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., L. Lin, M. Yang, Y. Xu, and J. Li, 2017: Disentangling fast and slow responses of the East Asian summer monsoon to reflecting and absorbing aerosol forcings. Atmos. Chem. Phys., 17, 11 07511 088, https://doi.org/10.5194/acp-17-11075-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., J. Luo, L. Zhang, L. Xia, D. Zhao, and J. Tang, 2014: Improvement of aerosol optical depth retrieval using visibility data in China during the past 50 years. J. Geophys. Res. Atmos., 119, 13 37013 387, https://doi.org/10.1002/2014JD021550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and D. A. Randall, 1996: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53, 30843102, https://doi.org/10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., and Coauthors, 2012: Simulation of direct radiative forcing of aerosols and their effects on East Asian climate using an interactive AGCM-aerosol coupled system. Climate Dyn., 38, 16751693, https://doi.org/10.1007/s00382-011-1131-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., H. Liao, and J. Li, 2010: Impacts of Asian summer monsoon on seasonal and interannual variations of aerosols over eastern China. J. Geophys. Res., 115, D00K05, https://doi.org/10.1029/2010JD014030.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Y. Wang, T. Niu, X. Zhang, S. Gong, Y. Zhang, and J. Sun, 2012: Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys., 12, 779799, https://doi.org/10.5194/acp-12-779-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., and Coauthors, 2009: Why the western Pacific subtropical high has extended westward since the late 1970s. J. Climate, 22, 21992215, https://doi.org/10.1175/2008JCLI2527.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 777 398 13
PDF Downloads 483 107 7