Phase Locking of the Boreal Summer Atmospheric Response to Dry Land Surface Anomalies in the Northern Hemisphere

Hailan Wang Science Systems and Applications, Inc., Lanham, Maryland

Search for other papers by Hailan Wang in
Current site
Google Scholar
PubMed
Close
,
Siegfried D. Schubert Science Systems and Applications, Inc., Lanham, and Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland

Search for other papers by Siegfried D. Schubert in
Current site
Google Scholar
PubMed
Close
,
Randal D. Koster Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland

Search for other papers by Randal D. Koster in
Current site
Google Scholar
PubMed
Close
, and
Yehui Chang Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, and Morgan State University, Baltimore, Maryland

Search for other papers by Yehui Chang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Past modeling simulations, supported by observational composites, indicate that during boreal summer, dry soil moisture anomalies in very different locations within the U.S. continental interior tend to induce the same upper-tropospheric circulation pattern: a high anomaly forms over west-central North America and a low anomaly forms to the east. The present study investigates the causes of this apparent phase locking of the upper-level circulation response and extends the investigation to other land regions in the Northern Hemisphere. The phase locking over North America is found to be induced by zonal asymmetries in the local basic state originating from North American orography. Specifically, orography-induced zonal variations of air temperature, those in the lower troposphere in particular, and surface pressure play a dominant role in placing the soil moisture–forced negative Rossby wave source (dominated by upper-level divergence anomalies) over the eastern leeside of the Western Cordillera, which subsequently produces an upper-level high anomaly over west-central North America, with the downstream anomalous circulation responses phase locked by continuity. The zonal variations of the local climatological atmospheric circulation, manifested as a climatological high over central North America, help shape the spatial pattern of the upper-level circulation responses. Considering the rest of the Northern Hemisphere, the northern Middle East exhibits similar phase locking, also induced by local orography. The Middle Eastern phase locking, however, is not as pronounced as that over North America; North America is where soil moisture anomalies have the greatest impact on the upper-tropospheric circulation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Hailan Wang, hailan.wang-1@nasa.gov

Abstract

Past modeling simulations, supported by observational composites, indicate that during boreal summer, dry soil moisture anomalies in very different locations within the U.S. continental interior tend to induce the same upper-tropospheric circulation pattern: a high anomaly forms over west-central North America and a low anomaly forms to the east. The present study investigates the causes of this apparent phase locking of the upper-level circulation response and extends the investigation to other land regions in the Northern Hemisphere. The phase locking over North America is found to be induced by zonal asymmetries in the local basic state originating from North American orography. Specifically, orography-induced zonal variations of air temperature, those in the lower troposphere in particular, and surface pressure play a dominant role in placing the soil moisture–forced negative Rossby wave source (dominated by upper-level divergence anomalies) over the eastern leeside of the Western Cordillera, which subsequently produces an upper-level high anomaly over west-central North America, with the downstream anomalous circulation responses phase locked by continuity. The zonal variations of the local climatological atmospheric circulation, manifested as a climatological high over central North America, help shape the spatial pattern of the upper-level circulation responses. Considering the rest of the Northern Hemisphere, the northern Middle East exhibits similar phase locking, also induced by local orography. The Middle Eastern phase locking, however, is not as pronounced as that over North America; North America is where soil moisture anomalies have the greatest impact on the upper-tropospheric circulation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Hailan Wang, hailan.wang-1@nasa.gov
Save
  • Bacmeister, J. T., M. J. Suarez, and F. R. Robertson, 2006: Rain reevaporation, boundary layer–convection interactions, and Pacific rainfall patterns in an AGCM. J. Atmos. Sci., 63, 33833403, https://doi.org/10.1175/JAS3791.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833850, https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2009: The basic ingredients of the North Atlantic storm track. Part I: Land–sea contrast and orography. J. Atmos. Sci., 66, 25392558, https://doi.org/10.1175/2009JAS3078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., and S. Manabe, 1992: The effects of orography on midlatitude Northern Hemisphere dry climates. J. Climate, 5, 11811201, https://doi.org/10.1175/1520-0442(1992)005<1181:TEOOOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helfand, H. M., and S. D. Schubert, 1995: Climatology of the simulated Great Plains low-level jet and its contribution to the continental moisture budget of the United States. J. Climate, 8, 784806, https://doi.org/10.1175/1520-0442(1995)008<0784:COTSGP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitoh, A., 2002: Effects of large-scale mountains on surface climate—A coupled ocean-atmosphere general circulation model study. J. Meteor. Soc. Japan, 80, 11651181, https://doi.org/10.2151/jmsj.80.1165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, and M. Heiser, 2000: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor., 1, 2646, https://doi.org/10.1175/1525-7541(2000)001<0026:VAPOPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2011: The second phase of the Global Land–Atmosphere Coupling Experiment: Soil moisture contributions to subseasonal forecast skill. J. Hydrometeor., 12, 805822, https://doi.org/10.1175/2011JHM1365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Y. Chang, and S. D. Schubert, 2014: A mechanism for land–atmosphere feedback involving planetary wave structures. J. Climate, 27, 92909301, https://doi.org/10.1175/JCLI-D-14-00315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Y. Chang, H. Wang, and S. D. Schubert, 2016: Impacts of local soil moisture anomalies on the atmospheric circulation and on remote surface meteorological fields during boreal summer: A comprehensive analysis over North America. J. Climate, 29, 73457364, https://doi.org/10.1175/JCLI-D-16-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A vertically Lagrangian finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. M., Z. Q. Wang, H. F. Zhuo, and G. X. Wu, 2017: Two types of summertime heating over Asian large-scale orography and excitation of potential-vorticity forcing II. Sensible heating over Tibetan-Iranian Plateau. Sci. China Earth Sci., 60, 733744, https://doi.org/10.1007/s11430-016-9016-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, J. Bacmeister, I.-S. Song, and A. Eichmann, 2012. The GEOS-5 Atmospheric General Circulation Model: Mean climate and development from MERRA to Fortuna. NASA Tech. Rep. Series on Global Modeling and Data Assimilation, Vol. 28, NASA Tech. Memo. NASA/TM–2012-104606, 117 pp.

  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002, https://doi.org/10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigam, S., I. M. Held, and S. W. Lyons, 1986: Linear simulation of the stationary eddies in a general circulation model. Part I: The no-mountain model. J. Atmos. Sci., 43, 29442961, https://doi.org/10.1175/1520-0469(1986)043<2944:LSOTSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Q. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 data assimilation system—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA Tech. Rep. Series on Global Modeling and Data Assimilation, Vol. 27, NASA Tech. Memo. NASA/TM-2007-104606, 101 pp.

  • Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 31923211, https://doi.org/10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S., H. Wang, and M. Suarez, 2011: Warm season subseasonal variability and climate extremes in the Northern Hemisphere: The role of stationary Rossby waves. J. Climate, 24, 47734792, https://doi.org/10.1175/JCLI-D-10-05035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S., H. Wang, R. Koster, M. Suarez, and P. Groisman, 2014: Northern Eurasian heat waves and droughts. J. Climate, 27, 31693207, https://doi.org/10.1175/JCLI-D-13-00360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., R. Seager, T. A. Shaw, and M. Ting, 2015: Mediterranean summer climate and the importance of Middle East topography. J. Climate, 28, 19771996, https://doi.org/10.1175/JCLI-D-14-00298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., 1994: Maintenance of northern summer stationary waves in a GCM. J. Atmos. Sci., 51, 32863308, https://doi.org/10.1175/1520-0469(1994)051<3286:MONSSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., and L. Yu, 1998: Steady response to tropical heating in wavy linear and nonlinear baroclinic models. J. Atmos. Sci., 55, 35653582, https://doi.org/10.1175/1520-0469(1998)055<3565:SRTTHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., and H. Wang, 2006: The role of North American orography in the maintenance of the Great Plains summer low-level jet. J. Atmos. Sci., 63, 10561068, https://doi.org/10.1175/JAS3664.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., H. Wang, and L. Yu, 2001: Nonlinear stationary wave maintenance and seasonal cycle in the GFDL R30 GCM. J. Atmos. Sci., 58, 23312354, https://doi.org/10.1175/1520-0469(2001)058<2331:NSWMAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose, 1988: The equatorial 30-60 day oscillation and the Arakawa-Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66, 883901, https://doi.org/10.2151/jmsj1965.66.6_883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunari, T., K. Saito, and K. Takata, 2006: Relative roles of large-scale orography and land surface processes in the global hydroclimate. Part I: Impacts on monsoon systems and the tropics. J. Hydrometeor., 7, 626641, https://doi.org/10.1175/JHM515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 341 93 2
PDF Downloads 257 83 1