Pacific Influences on the Meridional Temperature Transport of the Indian Ocean

Jie Ma Physical Oceanography Laboratory/Qingdao Collaborative Innovation Centre of Marine Science and Technology, Ocean University of China, and College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China, and CSIRO Oceans and Atmosphere, Crawley, Western Australia, Australia

Search for other papers by Jie Ma in
Current site
Google Scholar
PubMed
Close
,
Ming Feng CSIRO Oceans and Atmosphere, Crawley, Western Australia, and Centre for Southern Hemisphere Oceans Research, CSIRO Oceans and Atmosphere, and CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

Search for other papers by Ming Feng in
Current site
Google Scholar
PubMed
Close
,
Bernadette M. Sloyan Centre for Southern Hemisphere Oceans Research, CSIRO Oceans and Atmosphere, CSIRO Oceans and Atmosphere, and CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

Search for other papers by Bernadette M. Sloyan in
Current site
Google Scholar
PubMed
Close
, and
Jian Lan Physical Oceanography Laboratory/Qingdao Collaborative Innovation Centre of Marine Science and Technology, Ocean University of China, and College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China

Search for other papers by Jian Lan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, low-frequency variability of the meridional temperature transport in the Indian Ocean is examined using a mesoscale-eddy-resolving global ocean circulation model for the period 1979–2014. The dominant empirical orthogonal function (EOF) of the meridional temperature transport is found to be highly influenced by Pacific El Niño–Southern Oscillation (ENSO) through both oceanic and atmospheric waveguides, with the southward temperature transport being stronger during La Niña and weaker during El Niño. A dynamical decomposition of the meridional streamfunction and temperature transport shows that the relative importance of different dynamic modes varies with latitude; these modes act together to contribute to the coherent ENSO response. The Ekman mode explains a larger part of low-frequency variability in overturning and temperature transport north of the equator. Between 25° and 3°S, variations associated with vertical shear mode are of greater importance. The external mode has an important contribution between 30° and 25°S where the western boundary currents impinge on topography. South of 25°S, the variability of the external mode contribution has significant negative correlations with the vertical shear mode, suggesting that the large variability of external mode depends on the joint effects of baroclinicity and topography, such that hydrographic sections alone may not be suitable for deducing changes in the meridional temperature transport at these latitudes.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ming Feng, ming.feng@csiro.au

Abstract

In this study, low-frequency variability of the meridional temperature transport in the Indian Ocean is examined using a mesoscale-eddy-resolving global ocean circulation model for the period 1979–2014. The dominant empirical orthogonal function (EOF) of the meridional temperature transport is found to be highly influenced by Pacific El Niño–Southern Oscillation (ENSO) through both oceanic and atmospheric waveguides, with the southward temperature transport being stronger during La Niña and weaker during El Niño. A dynamical decomposition of the meridional streamfunction and temperature transport shows that the relative importance of different dynamic modes varies with latitude; these modes act together to contribute to the coherent ENSO response. The Ekman mode explains a larger part of low-frequency variability in overturning and temperature transport north of the equator. Between 25° and 3°S, variations associated with vertical shear mode are of greater importance. The external mode has an important contribution between 30° and 25°S where the western boundary currents impinge on topography. South of 25°S, the variability of the external mode contribution has significant negative correlations with the vertical shear mode, suggesting that the large variability of external mode depends on the joint effects of baroclinicity and topography, such that hydrographic sections alone may not be suitable for deducing changes in the meridional temperature transport at these latitudes.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ming Feng, ming.feng@csiro.au
Save
  • Bjerknes, V. I., H. S. Bjerknes, and T. Bergeron, 1933: Physikalische Hydrodynamik, Springer-Verlag, 797 pp.

    • Crossref
    • Export Citation
  • Böning, C. W., and P. Herrmann, 1994: Annual cycle of poleward heat transport in the ocean: Results from high-resolution modeling of the North and equatorial Atlantic. J. Phys. Oceanogr., 24, 91107, https://doi.org/10.1175/1520-0485(1994)024<0091:ACOPHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1982: Seasonal variation in meridional overturning and poleward heat transport in the Atlantic and Pacific Oceans: A model study. J. Mar. Res., 40, 3953.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., and L. M. Beal, 2001: Role of the Agulhas Current in Indian Ocean circulation and associated heat and freshwater fluxes. Deep-Sea Res. I, 48, 18211845, https://doi.org/10.1016/S0967-0637(00)00111-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cabanes, C., T. Lee, and L.-L. Fu, 2008: Mechanisms of interannual variations of the meridional overturning circulation of the North Atlantic Ocean. J. Phys. Oceanogr., 38, 467480, https://doi.org/10.1175/2007JPO3726.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carissimo, B. C., A. H. Oort, and T. H. Vonder Haar, 1985: Estimating the meridional energy transports in the atmosphere and ocean. J. Phys. Oceanogr., 15, 8291, https://doi.org/10.1175/1520-0485(1985)015<0082:ETMETI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chambers, D. P., B. D. Tapley, and R. H. Stewart, 1999: Anomalous warming in the Indian Ocean coincident with El Niño. J. Geophys. Res., 104, 30353047, https://doi.org/10.1029/1998JC900085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chirokova, G., and P. J. Webster, 2006: Interannual variability of Indian Ocean heat transport. J. Climate, 19, 10131031, https://doi.org/10.1175/JCLI3676.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and X. Liu, 1994: Interannual sea level in the northern and eastern Indian Ocean. J. Phys. Oceanogr., 24, 12241235, https://doi.org/10.1175/1520-0485(1994)024<1224:ISLITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and S. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 18301841, https://doi.org/10.1002/qj.493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domingues, C. M., M. E. Maltrud, S. E. Wijffels, J. A. Church, and M. Tomczak, 2007: Simulated Lagrangian pathways between the Leeuwin Current System and the upper-ocean circulation of the southeast Indian Ocean. Deep-Sea Res. II, 54, 797817, https://doi.org/10.1016/j.dsr2.2006.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., G. Meyers, A. Pearce, and S. Wijffels, 2003: Annual and interannual variations of the Leeuwin Current at 32°S. J. Geophys. Res., 108, 3355, https://doi.org/10.1029/2002JC001763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., M. J. McPhaden, and T. Lee, 2010: Decadal variability of the Pacific subtropical cells and their influence on the southeast Indian Ocean. Geophys. Res. Lett., 37, L09606, https://doi.org/10.1029/2010GL042796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., C. Böning, A. Biastoch, E. Behrens, E. Weller, and Y. Masumoto, 2011: The reversal of the multi-decadal trends of the equatorial Pacific easterly winds, and the Indonesian Throughflow and Leeuwin Current transports. Geophys. Res. Lett., 38, L11604, https://doi.org/10.1029/2011GL047291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., X. Zhang, P. Oke, D. Monselesan, M. Chamberlain, R. Matear, and A. Schiller, 2016: Invigorating ocean boundary current systems around Australia during 1979–2014: As simulated in a near-global eddy-resolving ocean model. J. Geophys. Res. Oceans, 121, 33953408, https://doi.org/10.1002/2016JC011842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferron, B., and J. Marotzke, 2003: Impact of 4D-variational assimilation of WOCE hydrography on the meridional circulation of the Indian Ocean. Deep-Sea Res. II, 50, 20052021, https://doi.org/10.1016/S0967-0645(03)00043-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., 2003: Large-scale mass transports, water mass formation, and diffusivities estimated from World Ocean Circulation Experiment (WOCE) hydrographic data. J. Geophys. Res., 108, 3213, https://doi.org/10.1029/2002JC001565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453457, https://doi.org/10.1038/35044048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garternicht, U., and F. Schott, 1997: Heat fluxes of the Indian Ocean from a global eddy-resolving model. J. Geophys. Res., 102, 21 14721 159, https://doi.org/10.1029/97JC01585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., 1996: The effect of the Indonesian throughflow on ocean circulation and heat exchange with the atmosphere: A review. J. Geophys. Res., 101, 12 21712 237, https://doi.org/10.1029/95JC03860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., M. J. Harrison, R. C. Pacanowski, and A. Rosati, 2004: A technical guide to MOM4. GFDL Ocean Group Tech. Rep. 5, 342 pp.

  • Hall, M. M., and H. L. Bryden, 1982: Direct estimates and mechanisms of ocean heat transport. Deep-Sea Res., 29A, 339359, https://doi.org/10.1016/0198-0149(82)90099-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., and L. Greischar, 1993: The monsoonal heat budget of the hydrosphere–atmosphere system in the Indian Ocean sector. J. Geophys. Res., 98, 68696881, https://doi.org/10.1029/92JC02956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernández-Guerra, A., and L. D. Talley, 2016: Meridional overturning transports at 30°S in the Indian and Pacific Oceans in 2002–2003 and 2009. Prog. Oceanogr., 146, 89120, https://doi.org/10.1016/j.pocean.2016.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirschi, J., and J. Marotzke, 2007: Reconstructing the meridional overturning circulation from boundary densities and the zonal wind stress. J. Phys. Oceanogr., 37, 743763, https://doi.org/10.1175/JPO3019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsiung, J., R. E. Newell, and T. Houghtby, 1989: The annual cycle of oceanic heat storage and oceanic meridional heat transport. Quart. J. Roy. Meteor. Soc., 115, 128, https://doi.org/10.1002/qj.49711548502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and J. Marotzke, 2001: The dynamics of ocean heat transport variability. Rev. Geophys., 39, 385411, https://doi.org/10.1029/2000RG000084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, Y., 2003: Ocean heat transport and its relationship to ocean circulation in the CMIP coupled models. Climate Dyn., 20, 153174, https://doi.org/10.1007/s00382-002-0261-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, W. E., and Coauthors, 2011: Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J. Climate, 24, 24292449, https://doi.org/10.1175/2010JCLI3997.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., and S. Levitus, 1986: Annual heat flux variations across the tropic circles. J. Phys. Oceanogr., 16, 14791486, https://doi.org/10.1175/1520-0485(1986)016<1479:AHFVAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. Note NCAR/TN-460+STR, 105 pp., https://doi.org/10.5065/D6KK98Q6.

    • Crossref
    • Export Citation
  • Lee, T., and J. Marotzke, 1998: Seasonal cycles of meridional overturning and heat transport of the Indian Ocean. J. Phys. Oceanogr., 28, 923943, https://doi.org/10.1175/1520-0485(1998)028<0923:SCOMOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1987: Meridional Ekman heat fluxes for the World Ocean and individual ocean basins. J. Phys. Oceanogr., 17, 14841492, https://doi.org/10.1175/1520-0485(1987)017<1484:MEHFFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q. Y., M. Feng, D. Wang, and S. Wijffels, 2015: Interannual variability of the Indonesian Throughflow transport: A revisit based on 30 year expendable bathythermograph data. J. Geophys. Res. Oceans, 120, 82708282, https://doi.org/10.1002/2015JC011351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loschnigg, J., and P. J. Webster, 2000: A coupled ocean–atmosphere system of SST modulation for the Indian Ocean. J. Climate, 13, 33423360, https://doi.org/10.1175/1520-0442(2000)013<3342:ACOASO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macdonald, A. M., 1998: The global ocean circulation: A hydrographic estimate and regional analysis. Prog. Oceanogr., 41, 281382, https://doi.org/10.1016/S0079-6611(98)00020-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and G. Meyers, 1998: Forced Rossby waves in the southern tropical Indian Ocean. J. Geophys. Res., 103, 27 58927 602, https://doi.org/10.1029/98JC02546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matear, R. J., M. A. Chamberlain, C. Sun, and M. Feng, 2013: Climate change projection of the Tasman Sea from an eddy-resolving ocean model. J. Geophys. Res. Oceans, 118, 29612976, https://doi.org/10.1002/jgrc.20202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., Jr., P. K. Kundu, and R. L. Molinari, 1993: A numerical investigation of dynamics, thermodynamics, and mixed-layer processes in the Indian Ocean. Prog. Oceanogr., 31, 181244, https://doi.org/10.1016/0079-6611(93)90002-U.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonagh, E. L., H. L. Bryden, B. A. King, and R. J. Sanders, 2008: The circulation of the Indian Ocean at 32°S. Prog. Oceanogr., 79, 2036, https://doi.org/10.1016/j.pocean.2008.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, G., 1996: Variation of Indonesian Throughflow and the El Niño–Southern Oscillation. J. Geophys. Res., 101, 12 25512 263, https://doi.org/10.1029/95JC03729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Msadek, R., W. E. Johns, S. G. Yeager, G. Danabasoglu, T. L. Delworth, and A. Rosati, 2013: The Atlantic meridional heat transport at 26.5°N and its relationship with the MOC in the RAPID array and the GFDL and NCAR coupled models. J. Climate, 26, 43354356, https://doi.org/10.1175/JCLI-D-12-00081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, P. R., and Coauthors, 2013: Evaluation of a near-global eddy-resolving ocean model. Geosci. Model Dev., 6, 591615, https://doi.org/10.5194/gmd-6-591-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perigaud, C., and P. Delecluse, 1993: Interannual sea level variations in the tropical Indian Ocean from Geosat and shallow water simulation. J. Phys. Oceanogr., 23, 19161934, https://doi.org/10.1175/1520-0485(1993)023<1916:ISLVIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potemra, J. T., 2001: Contribution of equatorial Pacific winds to southern tropical Indian Ocean Rossby waves. J. Geophys. Res., 106, 24072422, https://doi.org/10.1029/1999JC000031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, X., A. Sen Gupta, and E. Van Sebille, 2015: Variability in the origins and pathways of Pacific Equatorial Undercurrent water. J. Geophys. Res. Oceans, 120, 31133128, https://doi.org/10.1002/2014JC010549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, S. A., and S. K. Behera, 2005: Subsurface influence on SST in the tropical Indian Ocean: Structure and interannual variability. Dyn. Atmos. Oceans, 39, 103135, https://doi.org/10.1016/j.dynatmoce.2004.10.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, D., and Coauthors, 2011: Monitoring the Atlantic meridional overturning circulation. Deep-Sea Res. II, 58, 17441753, https://doi.org/10.1016/j.dsr2.2010.10.056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ridgway, K. R., and J. R. Dunn, 2003: Mesoscale structure of the mean East Australian Current System and its relationship with topography. Prog. Oceanogr., 56, 189222, https://doi.org/10.1016/S0079-6611(03)00004-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, C. D., and Coauthors, 2013: Atmosphere drives recent interannual variability of the Atlantic meridional overturning circulation at 26.5°N. Geophys. Res. Lett., 40, 51645170, https://doi.org/10.1002/grl.50930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rykova, T., P. R. Oke, and D. A. Griffin, 2017: A comparison of the structure, properties, and water mass composition of quasi-isotropic eddies in western boundary currents in an eddy-resolving ocean model. Ocean Modell., 114, 113, https://doi.org/10.1016/j.ocemod.2017.03.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiller, A., P. R. Oke, G. Brassington, M. Entel, R. Fiedler, D. A. Griffin, and J. V. Mansbridge, 2008: Eddy-resolving ocean circulation in the Asian-Australian region inferred from an ocean reanalysis effort. Prog. Oceanogr., 76, 334365, https://doi.org/10.1016/j.pocean.2008.01.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S.-P. Xie, and J. P. McCreary Jr., 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, G., J. Ribbe, W. Cai, and T. Cowan, 2007: Multidecadal variability in the transmission of ENSO signals to the Indian Ocean. Geophys. Res. Lett., 34, L09706, https://doi.org/10.1029/2007GL029528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sime, L. C., D. P. Stevens, K. J. Heywood, and K. I. C. Oliver, 2006: A decomposition of the Atlantic meridional overturning. J. Phys. Oceanogr., 36, 22532270, https://doi.org/10.1175/JPO2974.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2001: The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31, 143173, https://doi.org/10.1175/1520-0485(2001)031<0143:TSOLOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprintall, J., S. E. Wijffels, R. Molcard, and I. Jaya, 2009: Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006. J. Geophys. Res., 114, C07001, https://doi.org/10.1029/2008JC005257.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, https://doi.org/10.5670/oceanog.2013.07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tillinger, D., and A. L. Gordon, 2009: Fifty years of the Indonesian Throughflow. J. Climate, 22, 63426355, https://doi.org/10.1175/2009JCLI2981.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J. M., and B. A. Warren, 1993: A hydrographic section across the subtropical South Indian Ocean. Deep-Sea Res. I, 40, 19732019, https://doi.org/10.1016/0967-0637(93)90042-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and A. Solomon, 1994: The global heat balance: Heat transports in the atmosphere and ocean. Climate Dyn., 10, 107134, https://doi.org/10.1007/BF00210625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wacongne, S., and R. Pacanowski, 1996: Seasonal heat transport in a primitive equations model of the tropical Indian Ocean. J. Phys. Oceanogr., 26, 26662699, https://doi.org/10.1175/1520-0485(1996)026<2666:SHTIAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wainwright, L., G. Meyers, S. Wijffels, and L. Pigot, 2008: Change in the Indonesian Throughflow with the climatic shift of 1976/77. Geophys. Res. Lett., 35, L03604, https://doi.org/10.1029/2007GL031911.

    • Search Google Scholar
    • Export Citation
  • Wang, L., C. J. Koblinsky, and S. Howden, 2001: Annual Rossby wave in the southern Indian Ocean: Why does it “appear” to break down in the middle ocean? J. Phys. Oceanogr., 31, 5474, https://doi.org/10.1175/1520-0485(2001)031<0054:ARWITS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijffels, S., and G. Meyers, 2004: An intersection of oceanic waveguides: Variability in the Indonesian Throughflow region. J. Phys. Oceanogr., 34, 12321253, https://doi.org/10.1175/1520-0485(2004)034<1232:AIOOWV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijffels, S., G. Meyers, and J. S. Godfrey, 2008: A 20-yr average of the Indonesian Throughflow: Regional currents and the interbasin exchange. J. Phys. Oceanogr., 38, 19651978, https://doi.org/10.1175/2008JPO3987.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. J. McCreary, 2002: Structure and mechanisms of South Indian Ocean climate variability. J. Climate, 15, 864878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, K. Q., and J. Marotzke, 1999: The importance of open-boundary estimation for an Indian Ocean GCM-data synthesis. J. Mar. Res., 57, 305334, https://doi.org/10.1357/002224099321618236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., and Coauthors, 2016: A near-global eddy-resolving OGCM for climate studies. Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-17.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 460 100 13
PDF Downloads 420 79 8