Assessing Seasonal Predictability Sources and Windows of High Predictability in the Climate Forecast System, Version 2

Douglas E. Miller University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Douglas E. Miller in
Current site
Google Scholar
PubMed
Close
and
Zhuo Wang University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Zhuo Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The representation of ENSO and NAO are examined in the Climate Forecast System, version 2 (CFSv2), reforecasts with a focus on the physical processes related to teleconnections and predictability. CFSv2 predicts ENSO well, but an eastward shift of the tropical Pacific sea surface temperature (SST) anomalies is evident. Although it appears minor on the global scale, the shift in convection and the large-scale wave train affects the model prediction of regional climate. In contrast, NAO is predicted poorly. The anomaly correlation coefficient (ACC) between the model ensemble mean and the observation is 0.27 during 1982–2010, and the ensemble spread is large. The representation of three sources of NAO predictability—SST, the stratospheric polar vortex, and the Arctic sea ice concentration—is investigated. It is found that the link between tropical Pacific SST and NAO is not well represented in CFSv2, and that the tropospheric–stratospheric interactions are too weak, both contributing to the poor prediction of NAO. Additionally, the impact of ENSO and NAO on prediction skill of CFSv2 in boreal winter is analyzed in terms of the spatial ACC of geopotential height. Active ENSO events exhibit larger prediction skill than neutral years, especially during the ENSO+/NAO− and ENSO−/NAO+ winters. Spatial patterns of prediction skill are also examined, and larger skill of geopotential height and 2-m air temperature is found outlined by the nodes of the PNA pattern, consistent with the large signal-to-noise ratios associated with the ENSO teleconnection.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhuo Wang, zhuowang@illinois.edu

This article is included in the Process-Oriented Model Diagnostics Special Collection.

Abstract

The representation of ENSO and NAO are examined in the Climate Forecast System, version 2 (CFSv2), reforecasts with a focus on the physical processes related to teleconnections and predictability. CFSv2 predicts ENSO well, but an eastward shift of the tropical Pacific sea surface temperature (SST) anomalies is evident. Although it appears minor on the global scale, the shift in convection and the large-scale wave train affects the model prediction of regional climate. In contrast, NAO is predicted poorly. The anomaly correlation coefficient (ACC) between the model ensemble mean and the observation is 0.27 during 1982–2010, and the ensemble spread is large. The representation of three sources of NAO predictability—SST, the stratospheric polar vortex, and the Arctic sea ice concentration—is investigated. It is found that the link between tropical Pacific SST and NAO is not well represented in CFSv2, and that the tropospheric–stratospheric interactions are too weak, both contributing to the poor prediction of NAO. Additionally, the impact of ENSO and NAO on prediction skill of CFSv2 in boreal winter is analyzed in terms of the spatial ACC of geopotential height. Active ENSO events exhibit larger prediction skill than neutral years, especially during the ENSO+/NAO− and ENSO−/NAO+ winters. Spatial patterns of prediction skill are also examined, and larger skill of geopotential height and 2-m air temperature is found outlined by the nodes of the PNA pattern, consistent with the large signal-to-noise ratios associated with the ENSO teleconnection.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhuo Wang, zhuowang@illinois.edu

This article is included in the Process-Oriented Model Diagnostics Special Collection.

Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambaum, M. H. P., and B. J. Hoskins, 2002: The NAO troposphere–stratosphere connection. J. Climate, 15, 19691978, https://doi.org/10.1175/1520-0442(2002)015<1969:TNTSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., 2013: Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett., 40, 47344739, https://doi.org/10.1002/grl.50880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, C. J., L. J. Gray, A. J. Charlton-Perez, M. M. Joshi, and A. A. Scaife, 2009: Stratospheric communication of El Niño teleconnections to European winter. J. Climate, 22, 40834096, https://doi.org/10.1175/2009JCLI2717.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., S. Lee, and S. B. Feldstein, 2004: Synoptic view of the North Atlantic Oscillation. J. Atmos. Sci., 61, 121144, https://doi.org/10.1175/1520-0469(2004)061<0121:SVOTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Björnsson, H., and S. A. Venegas, 1997: A manual for EOF and SVD analyses of climate data. McGill University CCGCR Rep. 971, McGill University, Montréal, Québec, 52 pp.

  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, https://doi.org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., 2007: Impact of El Niño–Southern Oscillation on European climate. Rev. Geophys., 45, RG3003, https://doi.org/10.1029/2006RG000199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., L. M. Polvani, and C. Deser, 2014: Separating the stratospheric and tropospheric pathways of El Niño–Southern Oscillation teleconnections. Environ. Res. Lett., 9, 024014, https://doi.org/10.1088/1748-9326/9/2/024014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. Seidel, S. Hardiman, N. Butchart, T. Birner, and A. Match, 2015: Defining sudden stratospheric warmings. Bull. Amer. Meteor. Soc., 96, 19131928, https://doi.org/10.1175/BAMS-D-13-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2010: Euro-Atlantic regimes and their teleconnections. Proc. ECMWF Seminar on Predictability in the European and Atlantic Regions, Reading, United Kingdom, ECMWF, 1–14.

  • Cassou, C., and L. Terray, 2001: Oceanic forcing of the wintertime low-frequency atmospheric variability in the North Atlantic European sector: A study with the ARPEGE model. J. Climate, 14, 42664291, https://doi.org/10.1175/1520-0442(2001)014<4266:OFOTWL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castanheira, J. M., and H. F. Graf, 2003: North Pacific–North Atlantic relationships under stratospheric control? J. Geophys. Res., 108, 4036, https://doi.org/10.1029/2002JD002754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22, 859881, https://doi.org/10.1175/1520-0485(1992)022<0859:LASHFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton-Perez, A., and Coauthors, 2013: On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J. Geophys. Res. Atmos., 118, 24942505, https://doi.org/10.1002/jgrd.50125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, J., and E. Cook, 1998: The changing relationship between ENSO variability and moisture balance in the continental United States. Geophys. Res. Lett., 25, 45294532, https://doi.org/10.1029/1998GL900145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15, 606623, https://doi.org/10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. A. Tomas, and S. Peng, 2007: The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Climate, 20, 47514767, https://doi.org/10.1175/JCLI4278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeWeaver, E., and S. Nigam, 2000: Zonal-eddy dynamics of the North Atlantic Oscillation. J. Climate, 13, 38933914, https://doi.org/10.1175/1520-0442(2000)013<3893:ZEDOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., A. Czaja, and B. L’Hedever, 1998: Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models. J. Climate, 11, 23102324, https://doi.org/10.1175/1520-0442(1998)011<2310:ASFITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furtado, J. C., J. L. Cohen, A. H. Butler, E. E. Riddle, and A. Kumar, 2015: Eurasian snow cover variability and links to winter climate in the CMIP5 models. Climate Dyn., 45, 25912605, https://doi.org/10.1007/s00382-015-2494-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., D. W. Waugh, and E. P. Gerber, 2013: The effect of tropospheric jet latitude on coupling between the stratospheric polar vortex and the troposphere. J. Climate, 26, 20772095, https://doi.org/10.1175/JCLI-D-12-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • George, S. E., and R. T. Sutton, 2006: Predictability and skill of boreal winter forecasts made with the ECMWF Seasonal Forecasting System II. Quart. J. Roy. Meteor. Soc., 132, 20312053, https://doi.org/10.1256/qj.04.180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and L. M. Polvani, 2009: Stratosphere–troposphere coupling in a relatively simple AGCM: The importance of stratospheric variability. J. Climate, 22, 19201933, https://doi.org/10.1175/2008JCLI2548.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, N., and T. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238, 657659, https://doi.org/10.1126/science.238.4827.657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S., M. Harrison, R. Pacanowski, and A. Rosati, 2003: A technical guide to MOM4. GFDL Ocean Group Tech. Rep. 5, 342 pp., http://gfdl.noaa.gov/bibliography/related_files/smg0301.pdf.

  • Grimm, A., and R. Tedeschi, 2009: ENSO and extreme rainfall events in South America. J. Climate, 22, 15891609, https://doi.org/10.1175/2008JCLI2429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannachi, A., and N. Trendafilov, 2017: Archetypal analysis: Mining weather and climate extremes. J. Climate, 30, 69276944, https://doi.org/10.1175/JCLI-D-16-0798.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 2013: The potential for skill across the range of the seamless weather-climate prediction problem: A stimulus for our science. Quart. J. Roy. Meteor. Soc., 139, 573584, https://doi.org/10.1002/qj.1991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, https://doi.org/10.1126/science.269.5224.676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, and G. Ottersen, 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35.

    • Crossref
    • Export Citation
  • Ineson, S., and A. Scaife, 2009: The role of the stratosphere in the European climate response to El Niño. Nat. Geosci., 2, 3236, https://doi.org/10.1038/ngeo381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean–atmosphere models. Climate Dyn., 31, 647664, https://doi.org/10.1007/s00382-008-0397-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., L.-L. Pan, and M. Watanabe, 2006: Dynamics of synoptic eddy and low-frequency flow feedback. Part I: A linear closure. J. Atmos. Sci., 63, 16771708, https://doi.org/10.1175/JAS3715.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., D. E. Waliser, K. M. Lau, and W. Stern, 2004: The Madden–Julian oscillation and its impact on Northern Hemisphere winter predictability. Mon. Wea. Rev., 132, 14621471, https://doi.org/10.1175/1520-0493(2004)132<1462:TMOAII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., A. Hazra, and L. M. V. Carvalho, 2015: The Madden–Julian oscillation and boreal winter forecast skill: An analysis of NCEP CFSv2 reforecasts. J. Climate, 28, 62976307, https://doi.org/10.1175/JCLI-D-15-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., T. Jónsson, and D. Wheeler, 1997: Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol., 17, 14331450, https://doi.org/10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H. M., P. Webster, and J. Curry, 2012: Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere winter. Climate Dyn., 39, 29572973, https://doi.org/10.1007/s00382-012-1364-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 22332256, https://doi.org/10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leathers, D. J., B. Yarnal, and M. A. Palecki, 1991: The Pacific/North American teleconnection pattern and United States climate. Part I: Regional temperature and precipitation associations. J. Climate, 4, 517528, https://doi.org/10.1175/1520-0442(1991)004<0517:TPATPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, S. Behera, and T. Yamagata, 2008: Extended ENSO predictions using a fully coupled ocean–atmosphere model. J. Climate, 21, 8493, https://doi.org/10.1175/2007JCLI1412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacLachlan, C., and Coauthors, 2015: Global Seasonal Forecast System version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 10721084, https://doi.org/10.1002/qj.2396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mariotti, A., 2007: How ENSO impacts precipitation in southwest central Asia. Geophys. Res. Lett., 34, L16706, https://doi.org/10.1029/2007GL030078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michelangeli, P., R. Vautard, and B. Legras, 1995: Weather regime occurrence and quasi stationarity. J. Atmos. Sci., 52, 12371256, https://doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., and R. W. Katz, 1985: Probability, Statistics, and Decision Making in the Atmospheric Sciences. Westview Press, 412 pp.

  • National Academies of Sciences, Engineering, and Medicine, 2016: Next Generation Earth System Prediction: Strategies for Subseasonal to Seasonal Forecasts. National Academies Press, 350 pp., https://doi.org/10.17226/21873.

    • Crossref
    • Export Citation
  • National Research Council, 2010: Assessment of Intraseasonal to Interannual Climate Prediction and Predictability. National Academies Press, 192 pp., https://doi.org/10.17226/12878.

    • Crossref
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y., S. P. Xie, A. Numaguti, and Y. Tanimoto, 2001: Tropical Atlantic air-sea interaction and its influence on the NAO. Geophys. Res. Lett., 28, 15071510, https://doi.org/10.1029/2000GL012565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, L.-L., 2005: Observed positive feedback between the NAO and the North Atlantic SSTA tripole. Geophys. Res. Lett., 32, L06707, https://doi.org/10.1029/2005GL022427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and S. Li, 2003: Mechanisms for the NAO responses to the North Atlantic SST tripole. J. Climate, 16, 19872004, https://doi.org/10.1175/1520-0442(2003)016<1987:MFTNRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, https://doi.org/10.1007/s003820050284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, J., and W. A. Robinson, 1995: The impact of tropical forcing on extratropical predictability in a simple global model. J. Atmos. Sci., 52, 38953910, https://doi.org/10.1175/1520-0469(1995)052<3895:TIOTFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reinhold, B. B., and R. T. Pierrehumbert, 1982: Dynamics of weather regimes: Quasi-stationary waves and blocking. Mon. Wea. Rev., 110, 11051145, https://doi.org/10.1175/1520-0493(1982)110<1105:DOWRQS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riddle, E. E., A. H. Butler, J. C. Furtado, J. L. Cohen, and A. Kumar, 2013: CFSv2 ensemble prediction of the wintertime Arctic Oscillation. Climate Dyn., 41, 10991116, https://doi.org/10.1007/s00382-013-1850-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., and W. Metz, 1990: Transient-eddy feedbacks derived from linear theory and observations. J. Atmos. Sci., 47, 27432764, https://doi.org/10.1175/1520-0469(1990)047<2743:TEFDFL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M., D. Rowell, and C. Folland, 1999: Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature, 398, 320323, https://doi.org/10.1038/18648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosati, A., K. Miyakoda, and R. Gudgel, 1997: The impact of ocean initial conditions on ENSO forecasting with a coupled model. Mon. Wea. Rev., 125, 754772, https://doi.org/10.1175/1520-0493(1997)125<0754:TIOOIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., 2010: Impact of ENSO on European climate. Proc. ECMWF Seminar on Predictability in the European and Atlantic Regions, Reading, United Kingdom, ECMWF, 1–14.

  • Scaife, A. A., J. R. Knight, G. K. Vallis, and C. K. Folland, 2005: A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys. Res. Lett., 32, L18715, https://doi.org/10.1029/2005GL023226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., C. K. Folland, L. V. Alexander, A. Moberg, and J. R. Knight, 2008: European climate extremes and the North Atlantic Oscillation. J. Climate, 21, 7283, https://doi.org/10.1175/2007JCLI1631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2014: Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41, 25142519, https://doi.org/10.1002/2014GL059637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2016: Seasonal winter forecasts and the stratosphere. Atmos. Sci. Lett., 17, 5156, https://doi.org/10.1002/asl.598.

  • Scaife, A. A., and Coauthors, 2017: Tropical rainfall, Rossby waves and regional winter climate predictions. Quart. J. Roy. Meteor. Soc., 143, 111, https://doi.org/10.1002/qj.2910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2017: The missing Northern European winter cooling response to Arctic sea ice loss. Nat. Commun., 8, 14603, https://doi.org/10.1038/ncomms14603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2013: Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett., 40, 959964, https://doi.org/10.1002/grl.50174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silver, N. C., and W. P. Dunlap, 1987: Averaging correlation coefficients: Should Fisher’s z transformation be used? J. Appl. Psychol., 72, 146148, https://doi.org/10.1037/0021-9010.72.1.146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., J. M. Wallace, and G. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 13631392, https://doi.org/10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. M., A. A. Scaife, R. Eade, and J. R. Knight, 2016: Seasonal to decadal prediction of the winter North Atlantic Oscillation: Emerging capability and future prospects. Quart. J. Roy. Meteor. Soc., 142, 611617, https://doi.org/10.1002/qj.2479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, C., and G. Magnusdottir, 2011: Dependence of NAO variability on coupling with sea ice. Climate Dyn., 36, 16811689, https://doi.org/10.1007/s00382-010-0752-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, C., G. Magnusdottir, and H. Stern, 2009: Observed feedback between winter sea ice and the North Atlantic Oscillation. J. Climate, 22, 60216032, https://doi.org/10.1175/2009JCLI3100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R., W. A. Norton, and S. P. Jewson, 2000: The North Atlantic Oscillation—What role for the ocean? Atmos. Sci. Lett., 1, 89100, https://doi.org/10.1006/asle.2000.0018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D., and J. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, https://doi.org/10.1029/98GL00950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D., M. Baldwin, and J. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15, 14211428, https://doi.org/10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toniazzo, T., and A. A. Scaife, 2006: The influence of ENSO on winter North Atlantic climate. Geophys. Res. Lett., 33, L24704, https://doi.org/10.1029/2006GL027881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., 1990: Multiple weather regimes over the North Atlantic: Analysis of precursors and successors. Mon. Wea. Rev., 118, 20562081, https://doi.org/10.1175/1520-0493(1990)118<2056:MWROTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2014: Evolution of ECMWF sub-seasonal forecast skill scores. Quart. J. Roy. Meteor. Soc., 140, 18891899, https://doi.org/10.1002/qj.2256.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., M. Ting, and P. J. Kushner, 2017: A robust empirical seasonal prediction of winter NAO and surface climate. Sci. Rep., 7, 279, https://doi.org/10.1038/s41598-017-00353-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., C.-P. Chang, and B. Wang, 2007: Impacts of El Niño and La Niña on the U.S. climate during northern summer. J. Climate, 20, 21652177, https://doi.org/10.1175/JCLI4118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., and T. Palmer, 2014: On the reliability of seasonal climate forecasts. J. Roy. Soc. Interface, 11, https://doi.org/10.1098/rsif.2013.1162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., A. Hannachi, and B. J. Hoskins, 2010: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856868, https://doi.org/10.1002/qj.625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X.-Y., Y. Yuan, and M. Ting, 2016: Dynamical link between the Barents–Kara sea ice and the Arctic Oscillation. J. Climate, 29, 51035122, https://doi.org/10.1175/JCLI-D-15-0669.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., 2004: ENSO-related impacts on Antarctic sea ice: A synthesis of phenomenon and mechanisms. Antarct. Sci., 16, 415425, https://doi.org/10.1017/S0954102004002238.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1107 316 46
PDF Downloads 479 111 10