On the Seasonal Cycle of the Tropical South Indian Ocean. Part I: Mixed Layer Heat and Salt Budgets

Saulo M. Soares International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Saulo M. Soares in
Current site
Google Scholar
PubMed
Close
,
Kelvin J. Richards Department of Oceanography and International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Kelvin J. Richards in
Current site
Google Scholar
PubMed
Close
,
Frank O. Bryan National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Frank O. Bryan in
Current site
Google Scholar
PubMed
Close
, and
Kunio Yoneyama Department of Coupled Ocean–Atmosphere–Land Processes Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan

Search for other papers by Kunio Yoneyama in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Scale interactions in the coupled ocean and atmosphere of the tropics play a crucial role in shaping the climate state and its spatial and temporal variability. The mechanisms driving the seasonal cycles of mixed layer (ML) temperature and salinity in the tropical south Indian Ocean (TSIO) are revisited and quantified using model and observations to form a basis on which to assess the cycle’s impact on shorter and longer time scale variability in the region. Budgets of ML heat for the western, central, and eastern TSIO in both model and observations indicate that seasonality in ML temperature is driven by surface heat fluxes in all regions; ocean processes, however, are essential to explain east–west differences in the cycle. In contrast, the salt budgets show that ML salinity in the west and central regions of the TSIO is driven by horizontal advection, with salinity increasing during austral winter mainly due to meridional advection, and freshening during spring–summer due to zonal advection; in the east, no single mechanism appears to dominate ML salinity seasonality. The ML seasonal cycle across the entire region is very much influenced by the basin-scale adjustment that occurs in response to monsoon winds in the eastern side of the basin. Zonal advection, as part of the adjustment process, is the key mechanism responsible for bringing fresher/colder waters from the east to the central and western TSIO during austral spring, leading to a lag in the coldest ML temperatures in the east relative to the west/central TSIO, and effectively coupling the eastern and western TSIO beyond simply Rossby wave dynamics.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Saulo M. Soares, saulo@hawaii.edu

Abstract

Scale interactions in the coupled ocean and atmosphere of the tropics play a crucial role in shaping the climate state and its spatial and temporal variability. The mechanisms driving the seasonal cycles of mixed layer (ML) temperature and salinity in the tropical south Indian Ocean (TSIO) are revisited and quantified using model and observations to form a basis on which to assess the cycle’s impact on shorter and longer time scale variability in the region. Budgets of ML heat for the western, central, and eastern TSIO in both model and observations indicate that seasonality in ML temperature is driven by surface heat fluxes in all regions; ocean processes, however, are essential to explain east–west differences in the cycle. In contrast, the salt budgets show that ML salinity in the west and central regions of the TSIO is driven by horizontal advection, with salinity increasing during austral winter mainly due to meridional advection, and freshening during spring–summer due to zonal advection; in the east, no single mechanism appears to dominate ML salinity seasonality. The ML seasonal cycle across the entire region is very much influenced by the basin-scale adjustment that occurs in response to monsoon winds in the eastern side of the basin. Zonal advection, as part of the adjustment process, is the key mechanism responsible for bringing fresher/colder waters from the east to the central and western TSIO during austral spring, leading to a lag in the coldest ML temperatures in the east relative to the west/central TSIO, and effectively coupling the eastern and western TSIO beyond simply Rossby wave dynamics.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Saulo M. Soares, saulo@hawaii.edu
Save
  • Annamalai, H., R. Murtugudde, J. Potemra, S.-P. Xie, P. Liu, and B. Wang, 2003: Coupled dynamics over the Indian Ocean: Spring initiation of the zonal mode. Deep-Sea Res. II, 50, 23052330, https://doi.org/10.1016/S0967-0645(03)00058-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Argo, 2018: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC). Accessed 2018, https://doi.org/10.17882/42182.

    • Crossref
    • Export Citation
  • Bonjean, F., and G. S. Lagerloef, 2002: Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr., 32, 29382954, https://doi.org/10.1175/1520-0485(2002)032<2938:DMAAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, F., and S. Bachman, 2015: Isohaline salinity budget of the North Atlantic salinity maximum. J. Phys. Oceanogr., 45, 724736, https://doi.org/10.1175/JPO-D-14-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Da-Allada, C. Y., F. Gaillard, and N. Kolodziejczyk, 2015: Mixed-layer salinity budget in the tropical Indian Ocean: Seasonal cycle based only on observations. Ocean Dyn., 65, 845857, https://doi.org/10.1007/s10236-015-0837-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., T. Qu, G. Meyers, Y. Masumoto, and H. Sasaki, 2005: Seasonal heat budget in the mixed layer of the southeastern tropical Indian Ocean in a high-resolution ocean general circulation model. J. Geophys. Res., 110, C04012, https://doi.org/10.1029/2004JC002845.

    • Search Google Scholar
    • Export Citation
  • Durand, F., G. Alory, R. Dussin, and N. Reul, 2013: SMOS reveals the signature of Indian Ocean dipole events. Ocean Dyn., 63, 12031212, https://doi.org/10.1007/s10236-013-0660-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Earth Space Research, 2009: OSCAR third degree resolution ocean surface currents, version 1. PO.DAAC, accessed 20 January 2016, https://doi.org/10.5067/OSCAR-03D01.

    • Crossref
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., and S. Wijffels, 2002: Intraseasonal variability in the South Equatorial Current of the east Indian Ocean. J. Phys. Oceanogr., 32, 265277, https://doi.org/10.1175/1520-0485(2002)032<0265:IVITSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., J. Vialard, B. P. Kumar, and M. J. McPhaden, 2010: Seasonal mixed layer heat balance of the southwestern tropical Indian Ocean. J. Climate, 23, 947965, https://doi.org/10.1175/2009JCLI3268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halkides, D. J., and T. Lee, 2009: Mechanisms controlling seasonal-to-interannual mixed layer temperature variability in the southeastern tropical Indian Ocean. J. Geophys. Res., 114, C02012, https://doi.org/10.1029/2008JC004949.

    • Search Google Scholar
    • Export Citation
  • Halkides, D. J., and T. Lee, 2011: Mechanisms controlling seasonal mixed layer temperature and salinity in the southwestern tropical Indian Ocean. Dyn. Atmos. Oceans, 51, 7793, https://doi.org/10.1016/j.dynatmoce.2011.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horii, T., I. Ueki, K. Ando, and K. Mizuno, 2013: Eastern Indian Ocean warming associated with the negative Indian Ocean dipole: A case study of the 2010 event. J. Geophys. Res. Oceans, 118, 536549, https://doi.org/10.1002/jgrc.20071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., 2011: Deep signatures of southern tropical Indian Ocean annual Rossby waves. J. Phys. Oceanogr., 41, 19581964, https://doi.org/10.1175/JPO-D-11-029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-B., I. Fukumori, and T. Lee, 2006: The closure of the ocean mixed layer temperature budget using level-coordinate model fields. J. Atmos. Oceanic Technol., 23, 840853, https://doi.org/10.1175/JTECH1883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-B., T. Lee, and I. Fukumori, 2007: Mechanisms controlling the interannual variation of mixed layer temperature averaged over the Niño-3 region. J. Climate, 20, 38223843, https://doi.org/10.1175/JCLI4206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. Rep. NCAR/TN-460+STR, 105 pp., https://doi.org/10.5065/D6KK98Q6.

    • Crossref
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laurindo, L. C., A. J. Mariano, and R. Lumpkin, 2017: An improved near-surface velocity climatology for the global ocean from drifter observations. Deep-Sea Res. I, 124, 7392, https://doi.org/10.1016/j.dsr.2017.04.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebedev, K. V., S. DeCarlo, P. W. Hacker, N. A. Maximenko, J. T. Potemra, and Y. Shen, 2010a: Argo products at the Asia-Pacific Data Research Center. 2010 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract IT25A-01.

  • Lebedev, K. V., S. DeCarlo, P. W. Hacker, N. A. Maximenko, J. T. Potemra, and Y. Shen, 2010b: IPRC products based on Argo data. Accessed 20 January 2016, http://apdrc.soest.hawaii.edu/projects/argo/.

  • Lee, T., I. Fukumori, and B. Tang, 2004: Temperature advection: Internal versus external processes. J. Phys. Oceanogr., 34, 19361944, https://doi.org/10.1175/1520-0485(2004)034<1936:TAIVEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and G. Meyers, 1998: Forced Rossby waves in the southern tropical Indian Ocean. J. Geophys. Res. Oceans, 103, 27 58927 602, https://doi.org/10.1029/98JC02546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., P. K. Kundu, and R. L. Molinari, 1993: A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Prog. Oceanogr., 31, 181244, https://doi.org/10.1016/0079-6611(93)90002-U.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 2009: RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction. Bull. Amer. Meteor. Soc., 90, 459480, https://doi.org/10.1175/2008BAMS2608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menezes, V. V., M. L. Vianna, and H. E. Phillips, 2014: Aquarius sea surface salinity in the south Indian Ocean: Revealing annual-period planetary waves. J. Geophys. Res. Oceans, 119, 38833908, https://doi.org/10.1002/2014JC009935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moisan, J. R., and P. P. Niiler, 1998: The seasonal heat budget of the North Pacific: Net heat flux and heat storage rates (1950–1990). J. Phys. Oceanogr., 28, 401421, https://doi.org/10.1175/1520-0485(1998)028<0401:TSHBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2016: Global Tropical Moored Buoy Array. Pacific Marine Environmental Laboratory, accessed 5 February 2016, https://www.pmel.noaa.gov/tao/drupal/disdel/.

  • NOAA, 2018: A drifter-derived monthly climatology of global near-surface currents. NOAA/Drifter Data Assembly Center, accessed 10 June 2018, http://www.aoml.noaa.gov/phod/dac/dac_meanvel.php.

  • Ogata, T., S.-P. Xie, J. Lan, and X. Zheng, 2013: Importance of ocean dynamics for the skewness of the Indian Ocean dipole mode. J. Climate, 26, 21452159, https://doi.org/10.1175/JCLI-D-11-00615.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Périgaud, C., and P. Delecluse, 1992: Annual sea level variations in the southern tropical Indian Ocean from Geosat and shallow-water simulations. J. Geophys. Res. Oceans, 97 (C12), 20 16920 178, https://doi.org/10.1029/92JC01961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N., B. Goswami, P. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S.-P. Xie, and J. P. McCreary, 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seiki, A., M. Katsumata, T. Horii, T. Hasegawa, K. J. Richards, K. Yoneyama, and R. Shirooka, 2013: Abrupt cooling associated with the oceanic Rossby wave and lateral advection during CINDY2011. J. Geophys. Res. Oceans, 118, 55235535, https://doi.org/10.1002/jgrc.20381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R., and Coauthors, 2010: The Parallel Ocean Program (POP) Reference Manual Ocean Component of the Community Climate System Model (CCSM) and Community Earth System Model (CESM). Tech. Rep. LAUR-01853, Los Alamos National Laboratory, 140 pp., https://ccsm.ucar.edu/models/cesm1.2/pop2/doc/sci/POPRefManual.pdf.

  • Stine, A. R., and P. Huybers, 2012: Changes in the seasonal cycle of temperature and atmospheric circulation. J. Climate, 25, 73627380, https://doi.org/10.1175/JCLI-D-11-00470.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenary, L. L., and W. Han, 2012: Intraseasonal-to-interannual variability of south Indian Ocean sea level and thermocline: Remote versus local forcing. J. Phys. Oceanogr., 42, 602627, https://doi.org/10.1175/JPO-D-11-084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TRMM, 2011: TRMM (TMPA/3B43) Rainfall Estimate L3 1 month 0.25 degree × 0.25 degree V7. Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 20 January 2016, https://doi.org/10.5067/TRMM/TMPA/MONTH/7.

    • Crossref
    • Export Citation
  • Vialard, J., G. R. Foltz, M. J. McPhaden, J. P. Duvel, and C. de Boyer Montégut, 2008: Strong Indian Ocean sea surface temperature signals associated with the Madden–Julian oscillation in late 2007 and early 2008. Geophys. Res. Lett., 35, L19608, https://doi.org/10.1029/2008GL035238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vialard, J., and Coauthors, 2009: Cirene: Air–sea interactions in the Seychelles–Chagos thermocline ridge region. Bull. Amer. Meteor. Soc., 90, 4561, https://doi.org/10.1175/2008BAMS2499.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, https://doi.org/10.1038/43848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary Jr., 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15, 864878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoi, T., T. Tozuka, and T. Yamagata, 2012: Seasonal and interannual variations of the SST above the Seychelles Dome. J. Climate, 25, 800814, https://doi.org/10.1175/JCLI-D-10-05001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, https://doi.org/10.1175/BAMS-D-12-00157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the Objectively Analyzed Air–Sea Fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. OAFlux Project Tech. Rep. OA-2008-01, 64 pp., http://oaflux.whoi.edu/pdfs/OAFlux_TechReport_3rd_release.pdf.

  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhou, L., R. Murtugudde, and M. Jochum, 2008: Seasonal influence of Indonesian Throughflow in the southwestern Indian Ocean. J. Phys. Oceanogr., 38, 15291541, https://doi.org/10.1175/2007JPO3851.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 693 165 27
PDF Downloads 471 79 8