Using Atmospheric Energy Transport to Quantitatively Constrain South Pacific Convergence Zone Shifts during ENSO

Benjamin R. Lintner Rutgers, The State University of New Jersey, and Rutgers Institute of Earth, Ocean, and Atmospheric Sciences, New Brunswick, New Jersey

Search for other papers by Benjamin R. Lintner in
Current site
Google Scholar
PubMed
Close
and
William R. Boos University of California, Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by William R. Boos in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The South Pacific convergence zone (SPCZ) exhibits well-known spatial displacements in response to anomalous sea surface temperatures (SSTs) associated with the El Niño–Southern Oscillation (ENSO). Although dynamic and thermodynamic changes during ENSO events are consistent with observed SPCZ shifts, explanations for these displacements have been largely qualitative. This study applies a theoretical framework based on generalizing arguments about the relationship between the zonal-mean intertropical convergence zone (ITCZ) and atmospheric energy transport (AET) to 2D, permitting quantification of SPCZ displacements during ENSO. Using either resolved atmospheric energy fluxes or estimates of column-integrated moist energy sources, this framework predicts well the observed SPCZ shifts during ENSO, at least when anomalous ENSO-region SSTs are relatively small. In large-amplitude ENSO events, such as the 1997/98 El Niño, the framework breaks down because of the large change in SPCZ precipitation intensity. The AET framework permits decomposition of the ENSO forcing into various components, such as column radiative heating versus surface turbulent fluxes, and local versus remote contributions. Column energy source anomalies in the equatorial central and eastern Pacific dominate the SPCZ shift. Furthermore, although the radiative flux anomaly is larger than the surface turbulent flux anomaly in the SPCZ region, the radiative flux anomaly, which can be viewed as a feedback on the ENSO forcing, accounts for slightly less than half of SPCZ precipitation anomalies during ENSO. This study also introduces an idealized analytical model used to illustrate AET anomalies during ENSO and to obtain a scaling for the SPCZ response to an anomalous equatorial energy source.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benjamin R. Lintner, lintner@envsci.rutgers.edu

Abstract

The South Pacific convergence zone (SPCZ) exhibits well-known spatial displacements in response to anomalous sea surface temperatures (SSTs) associated with the El Niño–Southern Oscillation (ENSO). Although dynamic and thermodynamic changes during ENSO events are consistent with observed SPCZ shifts, explanations for these displacements have been largely qualitative. This study applies a theoretical framework based on generalizing arguments about the relationship between the zonal-mean intertropical convergence zone (ITCZ) and atmospheric energy transport (AET) to 2D, permitting quantification of SPCZ displacements during ENSO. Using either resolved atmospheric energy fluxes or estimates of column-integrated moist energy sources, this framework predicts well the observed SPCZ shifts during ENSO, at least when anomalous ENSO-region SSTs are relatively small. In large-amplitude ENSO events, such as the 1997/98 El Niño, the framework breaks down because of the large change in SPCZ precipitation intensity. The AET framework permits decomposition of the ENSO forcing into various components, such as column radiative heating versus surface turbulent fluxes, and local versus remote contributions. Column energy source anomalies in the equatorial central and eastern Pacific dominate the SPCZ shift. Furthermore, although the radiative flux anomaly is larger than the surface turbulent flux anomaly in the SPCZ region, the radiative flux anomaly, which can be viewed as a feedback on the ENSO forcing, accounts for slightly less than half of SPCZ precipitation anomalies during ENSO. This study also introduces an idealized analytical model used to illustrate AET anomalies during ENSO and to obtain a scaling for the SPCZ response to an anomalous equatorial energy source.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benjamin R. Lintner, lintner@envsci.rutgers.edu
Save
  • Adam, O., T. Bischoff, and T. Schneider, 2016: Seasonal and interannual variations of the energy flux equator and ITCZ. Part II: Zonally varying shifts of the ITCZ. J. Climate, 29, 72817293, https://doi.org/10.1175/JCLI-D-15-0710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett., 33, L17810, https://doi.org/10.1029/2006GL026672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bendix, A., and J. Bendix, 2006: Heavy rainfall episodes in Ecuador during El Niño events and associated regional atmospheric circulation and SST patterns. Adv. Geosci., 6, 4349, https://doi.org/10.5194/adgeo-6-43-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrisford, P., P. Kållberg, S. Kobayashi, D. Dee, S. Uppala, A. J. Simmons, P. Poli, and H. Sato, 2011: Atmospheric conservation properties in ERA-Interim. Quart. J. Roy. Meteor. Soc., 137, 13811399, https://doi.org/10.1002/qj.864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biasutti, M., and Coauthors, 2018: Global energetics and local physics as drivers of past, present and future monsoons. Nat. Geosci., 11, 392400, https://doi.org/10.1038/s41561-018-0137-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and T. Schneider, 2014: Energetic constraints on the position of the intertropical convergence zone. J. Climate, 27, 49374951, https://doi.org/10.1175/JCLI-D-13-00650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and R. L. Korty, 2016: Regional energy budget control of the intertropical convergence zone and application to mid-Holocene rainfall. Nat. Geosci., 9, 892897, https://doi.org/10.1038/ngeo2833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borlace, S., A. Santoso, W. Cai, and M. Collins, 2014: Extreme swings of the South Pacific convergence zone and the different types of El Niño events. Geophys. Res. Lett., 41, 46954703, https://doi.org/10.1002/2014GL060551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., C. Jones, and B. Liebmann, 2004: The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Climate, 17, 88108, https://doi.org/10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25, 477496, https://doi.org/10.1007/s00382-005-0040-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and B. R. Lintner, 2005: Mechanisms of remote tropical surface warming during El Niño. J. Climate, 18, 41304149, https://doi.org/10.1175/JCLI3529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, K.-Y., G. A. Vecchi, and A. T. Wittenberg, 2015: Nonlinear zonal wind response to ENSO in the CMIP5 models: Roles of the zonal and meridional shift of the ITCZ/SPCZ and the simulated climatological precipitation. J. Climate, 28, 85568573, https://doi.org/10.1175/JCLI-D-15-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clem, K., and J. Renwick, 2015: Austral spring Southern Hemisphere circulation and temperature changes and links to the SPCZ. J. Climate, 28, 73717384, https://doi.org/10.1175/JCLI-D-15-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colasacco-Thumm, N., 2015: An investigation of surface heat fluxes during El Niño–Southern Oscillation (ENSO) evolution in reanalyses. M.S. thesis, Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, 70 pp.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, and D. McGee, 2013: The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the Last Glacial Maximum. J. Climate, 26, 35973618, https://doi.org/10.1175/JCLI-D-12-00467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean–Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764, https://doi.org/10.1029/95JC03205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., J. A. Renwick, M. J. Salinger, and A. B. Mullan, 2002: Relative influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific convergence zone. Geophys. Res. Lett., 29, 1643, https://doi.org/10.1029/2001GL014201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, B., and J. Marshall, 2017: Coupling of trade winds with ocean circulation damps ITCZ shifts. J. Climate, 30, 43954411, https://doi.org/10.1175/JCLI-D-16-0818.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., and R. G. Tedeschi, 2009: ENSO and extreme rainfall events in South America. J. Climate, 22, 15891609, https://doi.org/10.1175/2008JCLI2429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haffke, C., and G. Magnusdottir, 2013: The South Pacific convergence zone in three decades of satellite images. J. Geophys. Res. Atmos., 118, 10 83910 849, https://doi.org/10.1002/jgrd.50838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juillet-Leclerc, A., S. Thiria, P. Naveau, T. Delcroix, N. Le Bec, D. Blamart, and T. Corrège, 2006: SPCZ migration and ENSO events during the 20th century as revealed by climate proxies from a Fiji coral. Geophys. Res. Lett., 33, L17710, https://doi.org/10.1029/2006GL025950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, https://doi.org/10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., Y. Shin, and S.-P. Xie, 2018: Extratropical forcing and tropical rainfall distribution: Energetics framework and ocean Ekman advection. npj Climate Atmos. Sci., 1, 20172, https://doi.org/10.1038/s41612-017-0004-6 xxxx.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern Pacific and central Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidwell, A., T. Lee, Y.-H. Jo, and X.-H. Yan, 2016: Characterization of the variability of the South Pacific convergence zone using satellite and reanalysis wind products. J. Climate, 29, 17171732, https://doi.org/10.1175/JCLI-D-15-0536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubar, T. L., D. L. Hartmann, and R. Wood, 2007: Radiative and convective driving of tropical high clouds. J. Climate, 20, 55105526, https://doi.org/10.1175/2007JCLI1628.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and G. L. Stephens, 2007: The tropical atmospheric energy budget from the TRMM Perspective. Part II: Evaluating GCM representations of the sensitivity of regional energy and water cycles to the 1998-99 ENSO cycle. J. Climate, 20, 45484571, https://doi.org/10.1175/JCLI4207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., and J. D. Neelin, 2008: Eastern margin variability of the South Pacific convergence zone. Geophys. Res. Lett., 35, L16701, https://doi.org/10.1029/2008GL034298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., B. Langenbrunner, J. D. Neelin, B. T. Anderson, M. J. Niznik, G. Li, and S.-P. Xie, 2016: Characterizing CMIP5 model spread in simulated rainfall in the Pacific intertropical convergence and South Pacific convergence zones. J. Geophys. Res., 121, 11 59011 607, https://doi.org/10.1002/2016JD025284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorrey, A., G. Dalu, J. Renwick, H. Diamond, and M. Gaetani, 2012: Reconstructing the South Pacific convergence zone position during the presatellite era: A La Niña case study. Mon. Wea. Rev., 140, 36533668, https://doi.org/10.1175/MWR-D-11-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2012: A multiscale framework for the origin and variability of the South Pacific convergence zone. Quart. J. Roy. Meteor. Soc., 138, 11651178, https://doi.org/10.1002/qj.1870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., B. J. Hoskins, J. M. Slingo, and M. Blackburn, 1996: Development of convection along the SPCZ within a Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 122, 669688, https://doi.org/10.1002/qj.49712253106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayer, M., K. E. Trenberth, L. Haimberger, and J. T. Fasullo, 2013: The response of tropical atmospheric energy budgets to ENSO. J. Climate, 26, 47104724, https://doi.org/10.1175/JCLI-D-12-00681.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGee, D., A. Donohoe, J. Marshall, and D. Ferreira, 2014: Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene. Earth Planet. Sci. Lett., 390, 6979, https://doi.org/10.1016/j.epsl.2013.12.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, B., S. B. Power, and S. McGree, 2014: The varied impacts of El Niño–Southern Oscillation on Pacific island climates. J. Climate, 27, 40154036, https://doi.org/10.1175/JCLI-D-13-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 2007: Moist dynamics of tropical convection zones in monsoons, teleconnections and global warming. The Global Circulation of the Atmosphere, T. Schneider and A. Sobel, Eds, Princeton University Press, Princeton, 267–301.

  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., C. Chou, and H. Su, 2003: Tropical drought regions in global warming and El Niño teleconnections. Geophys. Res. Lett., 30, 2275, https://doi.org/10.1029/2003GL018625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niznik, M. J., and B. R. Lintner, 2013: Circulation, moisture, and precipitation relationships along the South Pacific convergence zone in reanalyses and CMIP5 models. J. Climate, 26, 10 17410 192, https://doi.org/10.1175/JCLI-D-13-00263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niznik, M. J., B. R. Lintner, A. J. Matthews, and M. J. Widlansky, 2015: The role of tropical–extratropical interaction and synoptic variability in maintaining the South Pacific convergence zone in CMIP5 models. J. Climate, 28, 33533374, https://doi.org/10.1175/JCLI-D-14-00527.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paek, H., J.-Y. Yu, and C. Qian, 2017: Why were the 2015/2016 and 1997/1998 extreme El Niños different? Geophys. Res. Lett., 44, 18481856, https://doi.org/10.1002/2016GL071515.

    • Search Google Scholar
    • Export Citation
  • Peters, M. E., Z. Kuang, and C. C. Walker, 2008: Analysis of atmospheric energy transport in ERA-40 and implications for simple models of the mean tropical circulation. J. Climate, 21, 52295241, https://doi.org/10.1175/2008JCLI2073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. Sessions, A. H. Sobel, and Z. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst., 1 (9), https://doi.org/10.3894/JAMES.2009.1.9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salinger, M. J., S. McGree, F. Beucher, S. B. Power, and F. Delage, 2014: A new index for variations in the position of the South Pacific convergence zone 1910/11–2011/2012. Climate Dyn., 43, 881892, https://doi.org/10.1007/s00382-013-2035-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2017: Feedback of atmosphere–ocean coupling on shifts of the intertropical convergence zone. Geophys. Res. Lett., 44, 11 64411 653, https://doi.org/10.1002/2017GL075817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, H., and J. D. Neelin, 2002: Teleconnection mechanisms for tropical Pacific descent anomalies during El Niño. J. Atmos. Sci., 59, 26942712, https://doi.org/10.1175/1520-0469(2002)059<2694:TMFTPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, K., and D. S. Battisti, 2007: Processes controlling the mean tropical Pacific precipitation pattern. Part II: The SPCZ and the southeast Pacific dry zone. J. Climate, 20, 56965706, https://doi.org/10.1175/2007JCLI1656.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1976: Spatial and temporal variations of the southern oscillation. Quart. J. Roy. Meteor. Soc., 102, 639653, https://doi.org/10.1002/qj.49710243310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: Using atmospheric budgets as a constraint on surface fluxes. J. Climate, 10, 27962809, https://doi.org/10.1175/1520-0442(1997)010<2796:UABAAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. M. Caron, and D. P. Stepaniak, 2001: The atmospheric energy budget and implications for surface fluxes and ocean heat transports. Climate Dyn., 17, 259276, https://doi.org/10.1007/PL00007927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Wiel, K., A. J. Matthews, D. P. Stevens, and M. M. Joshi, 2015: A dynamical framework for the origin of the diagonal South Pacific and South Atlantic convergence zones. Quart. J. Roy. Meteor. Soc., 141, 19972010, https://doi.org/10.1002/qj.2508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, D. G., 1994: The South Pacific convergence zone (SPCZ): A review. Mon. Wea. Rev., 122, 19491970, https://doi.org/10.1175/1520-0493(1994)122<1949:TSPCZA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., M. Lengaigne, C. E. Menkes, N. C. Jourdain, P. Marchesiello, and G. Madec, 2011: Interannual variability of the South Pacific convergence zone and implications for tropical cyclone genesis. Climate Dyn., 36, 18811896, https://doi.org/10.1007/s00382-009-0716-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and T. Li, 1993: A simple tropical atmospheric model of relevance to short-term climate variations. J. Atmos. Sci., 50, 260284, https://doi.org/10.1175/1520-0469(1993)050<0260:ASTAMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Widlansky, M. J., P. J. Webster, and C. D. Hoyos, 2011: On the location and orientation of the South Pacific convergence zone. Climate Dyn., 36, 561578, https://doi.org/10.1007/s00382-010-0871-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., and Coauthors, 2018: ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys., 56, 185206, https://doi.org/10.1002/2017RG000568.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 673 221 19
PDF Downloads 486 138 14