Physical–Statistical Model for Summer Extreme Temperature Events over South Korea

Won-Il Lim Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University, Busan, South Korea

Search for other papers by Won-Il Lim in
Current site
Google Scholar
PubMed
Close
and
Kyong-Hwan Seo Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University, Busan, South Korea

Search for other papers by Kyong-Hwan Seo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extreme temperature events have a significant impact on human life and property. Since the Korean Peninsula is affected by the high variability of the East Asian summer monsoon system, it is difficult to predict extreme temperature events skillfully. Here, we construct an empirical model to investigate the interannual variation of the frequency of summer extreme temperature events over South Korea by identifying predictors (explanatory variables) from ocean boundary conditions. The selected explanatory variables are sea surface temperature anomalies (SSTAs) over the North Atlantic, the western North Pacific, and the eastern North Pacific. The cross-validated correlation skill of the statistical model constructed using a 23-yr dataset is estimated to be 0.77. A common feature that all three explanatory variables contain is the development of an anticyclonic circulation anomaly over the Korean Peninsula. The North Atlantic SSTA predictor acts as a forcing mechanism for the generation of Rossby wave trains downstream, developing an anticyclonic circulation anomaly in the lower and upper troposphere over the Korean Peninsula. The western North Pacific (WNP) warm SSTA predictor induces a cyclonic circulation anomaly over the WNP and an anticyclonic circulation anomaly over the Korean Peninsula, resembling the Pacific–Japan teleconnection mechanism that represents the northward Rossby wave propagation over the western Pacific. Through air–sea interaction, the tripolar SSTA pattern in the eastern North Pacific representing the North Pacific gyre oscillation induces two opposite precipitation anomalies in the equatorial Maritime Continent and the Philippine Sea. These diabatic anomalies excite northward-propagating Rossby waves that form a cyclonic circulation anomaly in the WNP area and an anticyclonic anomaly over the Korean Peninsula.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Kyong-Hwan Seo, khseo@pusan.ac.kr

Abstract

Extreme temperature events have a significant impact on human life and property. Since the Korean Peninsula is affected by the high variability of the East Asian summer monsoon system, it is difficult to predict extreme temperature events skillfully. Here, we construct an empirical model to investigate the interannual variation of the frequency of summer extreme temperature events over South Korea by identifying predictors (explanatory variables) from ocean boundary conditions. The selected explanatory variables are sea surface temperature anomalies (SSTAs) over the North Atlantic, the western North Pacific, and the eastern North Pacific. The cross-validated correlation skill of the statistical model constructed using a 23-yr dataset is estimated to be 0.77. A common feature that all three explanatory variables contain is the development of an anticyclonic circulation anomaly over the Korean Peninsula. The North Atlantic SSTA predictor acts as a forcing mechanism for the generation of Rossby wave trains downstream, developing an anticyclonic circulation anomaly in the lower and upper troposphere over the Korean Peninsula. The western North Pacific (WNP) warm SSTA predictor induces a cyclonic circulation anomaly over the WNP and an anticyclonic circulation anomaly over the Korean Peninsula, resembling the Pacific–Japan teleconnection mechanism that represents the northward Rossby wave propagation over the western Pacific. Through air–sea interaction, the tripolar SSTA pattern in the eastern North Pacific representing the North Pacific gyre oscillation induces two opposite precipitation anomalies in the equatorial Maritime Continent and the Philippine Sea. These diabatic anomalies excite northward-propagating Rossby waves that form a cyclonic circulation anomaly in the WNP area and an anticyclonic anomaly over the Korean Peninsula.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Kyong-Hwan Seo, khseo@pusan.ac.kr
Save
  • Black, E., M. Blackburn, G. Harrison, and J. Methven, 2004: Factors contributing to the summer 2003 European heat wave. Weather, 59, 217223, https://doi.org/10.1256/wea.74.04.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blockeel, H., and J. Struyf, 2002: Efficient algorithms for decision tree cross-validation. J. Mach. Learn. Res., 3, 621650.

  • Colombo, A., D. Etkin, and B. Karney, 1999: Climate variability and the frequency of extreme temperature events for nine sites across Canada: Implications for power usage. J. Climate, 12, 24902502, https://doi.org/10.1175/1520-0442(1999)012<2490:CVATFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., A. Robinson, and S. Rahmstorf, 2013: Global increase in record-breaking monthly-mean temperatures. Climatic Change, 118, 771782, https://doi.org/10.1007/s10584-012-0668-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, https://doi.org/10.1175/JCLI3629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and Coauthors, 2008: North Pacific gyre oscillation links ocean climate and ecosystem change. Geophys. Res. Lett., 35, L08607, https://doi.org/10.1029/2007GL032838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., K. M. Cobb, J. C. Furtado, N. Schneider, B. Anderson, A. Bracco, M. A. Alexander, and D. Vimont, 2010: Central Pacific El Niño and decadal climate change in the North Pacific. Nat. Geosci., 3, 762765, https://doi.org/10.1038/ngeo984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q. H., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, K., Y. Liu, and H. Chen, 2012: Improving the prediction of the East Asian summer monsoon: New approaches. Wea. Forecasting, 27, 10171030, https://doi.org/10.1175/WAF-D-11-00092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, C. B., V. Barros, T. F. Stocker, and Q. Dahe, Eds., 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, 582 pp.

  • Gandin, L., and A. H. Murphy, 1992: Equitable skill scores for categorical forecasts. Mon. Wea. Rev., 120, 361370, https://doi.org/10.1175/1520-0493(1992)120<0361:ESSFCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerrity, J. P., Jr., 1992: A note on Gandin and Murphy’s equitable skill score. Mon. Wea. Rev., 120, 27092712, https://doi.org/10.1175/1520-0493(1992)120<2709:ANOGAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, C. T., and W. F. Stern, 1982: A description of the GFDL Global Spectral Model. Mon. Wea. Rev., 110, 625644, https://doi.org/10.1175/1520-0493(1982)110<0625:ADOTGG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2012: Elements of the Modular Ocean Model (MOM). NOAA/Geophysical Fluid Dynamics Laboratory Tech. Rep. 7, 618 pp.

  • Hall, N. M. J., J. Derome, and H. Lin, 2001: The extratropical signal generated by a midlatitude SST anomaly. Part I: Sensitivity at equilibrium. J. Climate, 14, 20352053, https://doi.org/10.1175/1520-0442(2001)014<2035:TESGBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and Coauthors, 2014: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 159–254.

  • Horton, D. E., N. C. Johnson, D. Singh, D. L. Swain, B. Rajaratnam, and N. S. Diffenbaugh, 2015: Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature, 522, 465469, https://doi.org/10.1038/nature14550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-H., J.-Y. Lee, K.-J. Ha, and C.-H. Tsou, 2017: Influences of boreal summer intraseasonal oscillation on heat waves in monsoon Asia. J. Climate, 30, 71917211, https://doi.org/10.1175/JCLI-D-16-0505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 520, https://doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imada, Y., S. Shiogma, M. Watanabe, M. Mori, M. Ishii, and M. Kimoto, 2014: The contribution of anthropogenic forcing to the Japanese heat waves of 2013 [in “Explaining Extreme Events of 2015 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 95 (9), S52S54, https://doi.org/10.1175/1520-0477-95.9.S1.1.

    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., and Coauthors, 2017: The status and prospect of seasonal climate prediction of climate over Korea and East Asia: A review. Asia-Pac. J. Atmos. Sci., 53, 149173, https://doi.org/10.1007/s13143-017-0008-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzake, J. Woolen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawamura, R., T. Murakami, and B. Wang, 1996: Tropical and midlatitude 45-day perturbations over the western Pacific during the northern summer. J. Meteor. Soc. Japan, 74, 867890, https://doi.org/10.2151/jmsj1965.74.6_867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-W., S.-W. Yeh, and E.-C. Chang, 2014: Combined effect of El Niño–Southern Oscillation and Pacific decadal oscillation on the East Asian winter monsoon. Climate Dyn., 42, 957971, https://doi.org/10.1007/s00382-013-1730-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-Y., K.-H. Seo, J.-H. Son, and K.-J. Ha, 2017: Development of statistical prediction models for changma precipitation: An ensemble approach. Asia-Pac. J. Atmos. Sci., 53, 207216, https://doi.org/10.1007/s13143-017-0027-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kornhuber, K., V. Petoukhov, S. Petri, S. Rahmstorf, and D. Coumou, 2017: Evidence for wave resonance as a key mechanism for generating high-amplitude quasi-stationary waves in boreal summer. Climate Dyn., 49, 19611979, https://doi.org/10.1007/s00382-016-3399-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, M.-H., J.-G. Jhun, B. Wang, S.-I. An, and J.-S. Kug, 2005: Decadal change in relationship between East Asian and WNP summer monsoons. Geophys. Res. Lett., 32, L16709, https://doi.org/10.1029/2005GL023026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kysely, J., and J. Kim, 2009: Mortality during heat waves in South Korea, 1991–2005: How exceptional was the 1994 heat wave? Climate Res., 38, 105116, https://doi.org/10.3354/cr00775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., and K.-M. Kim, 2012: The 2010 Pakistan flood and Russian heat wave: Teleconnection of hydrometeorological extremes. J. Hydrometeor., 13, 392403, https://doi.org/10.1175/JHM-D-11-016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-E., and K.-H. Seo, 2013: The development of a statistical forecast model for changma. Wea. Forecasting, 28, 13041321, https://doi.org/10.1175/WAF-D-13-00003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W.-S., and M.-I. Lee, 2016: Interannual variability of heat waves in South Korea and their connection with large-scale atmospheric circulation patterns. Int. J. Climatol., 36, 48154830, https://doi.org/10.1002/joc.4671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lepage, Y., 1971: A combination of Wilcoxon’s and Ansari–Bradley’s statistics. Biometrika, 58, 213217, https://doi.org/10.1093/biomet/58.1.213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., 2009: Global extratropical response to diabatic heating variability of the Asian summer monsoon. J. Atmos. Sci., 66, 26972713, https://doi.org/10.1175/2009JAS3008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A vertically Lagrangian finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and A. B. Shmakin, 2002: Global modeling of land water and energy balances. Part I: The Land Dynamics (LaD) model. J. Hydrometeor., 3, 283299, https://doi.org/10.1175/1525-7541(2002)003<0283:GMOLWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S.-K., and Coauthors, 2015: Changes in weather and climate extremes over Korea and possible causes: A review. Asia-Pac. J. Atmos. Sci., 51, 103121, https://doi.org/10.1007/s13143-015-0066-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116, 24172424, https://doi.org/10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and T. Fukamachi, 2004: Evolution and dynamics of summertime blocking over the Far East and the associated surface Okhotsk high. Quart. J. Roy. Meteor. Soc., 130, 12131233, https://doi.org/10.1256/qj.03.101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman, 1996: Applied Linear Statistical Models. 4th ed. Irwin, 720 pp.

  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H.-L., K.-H. Seo, and J.-H. Son, 2015: Development of a dynamics-based statistical prediction model for the changma onset. J. Climate, 28, 66476666, https://doi.org/10.1175/JCLI-D-14-00502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J.-Y., S.-W. Yeh, J.-S. Kug, and J. Yoon, 2013: Favorable connection between seasonal footprinting mechanism and El Niño. Climate Dyn., 40, 11691181, https://doi.org/10.1007/s00382-012-1477-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., D. Argüeso, and C. J. White, 2015: Relationships between climate variability, soil moisture, and Australian heatwaves. J. Geophys. Res., 120, 81448164, https://doi.org/10.1002/2015JD023592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1981: The North Pacific Oscillation. J. Climatol., 1, 3958, https://doi.org/10.1002/joc.3370010106.

  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., H. Wang, R. D. Koster, M. J. Suarez, and P. Ya. Groisman, 2014: Northern Eurasian heat waves and droughts. J. Climate, 27, 31693207, https://doi.org/10.1175/JCLI-D-13-00360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., and S. Son, 2012: The global atmospheric circulation response to tropical diabatic heating associated with the Madden–Julian oscillation during northern winter. J. Atmos. Sci., 69, 7996, https://doi.org/10.1175/2011JAS3686.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., J.-H. Son, and J.-Y. Lee, 2011: A new look at changma. Korean Meteor. Soc., 21, 109121.

  • Seo, K.-H., J.-H. Son, S.-E. Lee, T. Tomita, and H.-S. Park, 2012: Mechanisms of an extraordinary East Asian summer monsoon event in July 2011. Geophys. Res. Lett., 39, L05704, https://doi.org/10.1029/2011GL050378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., J.-H. Son, S.-E. Lee, and H.-S. Park, 2015: Northern East Asian monsoon precipitation revealed by airmass variability and its prediction. J. Climate, 28, 62216233, https://doi.org/10.1175/JCLI-D-14-00526.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., H.-J. Lee, and D. M. W. Frierson, 2016: Unraveling the teleconnection mechanisms that induce wintertime temperature anomalies over the Northern Hemisphere continents in response to the MJO. J. Atmos. Sci., 73, 35573571, https://doi.org/10.1175/JAS-D-16-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, C., M. Watanabe, H. Shiogama, Y. Imada, and M. Mori, 2016: A persistent Japanese heat wave in early August 2015: Roles of natural variability and human-induced warming [in “Explaining Extreme Events of 2015 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 97 (12), S107S112, https://doi.org/10.1175/BAMS-D-16-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Q., X. Zhang, and J. A. Francis, 2014: Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere. Nat. Climate Change, 4, 4550, https://doi.org/10.1038/nclimate2065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., and I. M. Held, 1990: The stationary wave response to a tropical SST anomaly in an idealized GCM. J. Atmos. Sci., 47, 25462566, https://doi.org/10.1175/1520-0469(1990)047<2546:TSWRTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueda, H., and T. Yasunari, 1996: Maturing process of the summer monsoon over the western North Pacific—A coupled ocean/atmosphere system. J. Meteor. Soc. Japan, 74, 493508, https://doi.org/10.2151/jmsj1965.74.4_493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueda, H., T. Yasunari, and R. Kawamura, 1995: Abrupt seasonal change of large-scale convection activity over the western Pacific in northern summer. J. Meteor. Soc. Japan, 73, 795809, https://doi.org/10.2151/jmsj1965.73.4_795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 39233926, https://doi.org/10.1029/2001GL013435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2003: Seasonal footprinting in the Pacific: Implications for ENSO. J. Climate, 16, 26682675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, G., and E. Bliss, 1932: World weather V. Mem. Roy. Meteor. Soc., 4, 5384.

  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, https://doi.org/10.1029/2005GL022734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2009: Advance and prospectus of seasonal prediction: Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980-2004). Climate Dyn., 33, 93117, https://doi.org/10.1007/s00382-008-0460-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., B. Xiang, and J.-Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA, 110, 27182722, https://doi.org/10.1073/pnas.1214626110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., M. Ting, and P. J. Kushner, 2017: A robust empirical seasonal prediction of winter NAO and surface climate. Sci. Rep., 7, 279, https://doi.org/10.1038/s41598-017-00353-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 630 pp.

  • Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol., 17, 525531, https://doi.org/10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2010: Attachment II. Global Aspects, Vol. I, Manual on the Global Data-Processing and Forecasting System, World Meteorological Organization Rep. WMO-485, II.8-1–II.8-17.

  • Wu, Z., B. Wang, J. Li, and F.-F. Jin, 2009: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, https://doi.org/10.1029/2009JD011733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, https://doi.org/10.3402/tellusa.v46i4.15484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, Y. Du, G. Huang, and H. Tokinaga, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaura, Y., and Y. Tomita, 2011: Spatiotemporal differences in the interannual variability of baiu frontal activity in June. Int. J. Climatol., 31, 5771, https://doi.org/10.1002/joc.2058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, X., W. Zhang, and M. Luo, 2016: The North Pacific gyre oscillation and East Asian summer precipitation. Atmos. Sci. Lett., 17, 531537, https://doi.org/10.1002/asl.688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yim, S., S. Yeh, R. Wu, and J. Jhun, 2008: The influence of ENSO on decadal variations in the relationship between the East Asian and western North Pacific summer monsoons. J. Climate, 21, 31653179, https://doi.org/10.1175/2007JCLI1948.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yonetani, T., and G. S. McCabe, 1994: Abrupt changes in regional temperature in the conterminous United States. Climate Res., 4, 1323, https://doi.org/10.3354/cr004013.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 446 131 10
PDF Downloads 361 89 2