Temporal and Spatial Characteristics of Short-Term Cloud Feedback on Global and Local Interannual Climate Fluctuations from A-Train Observations

Qing Yue Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Qing Yue in
Current site
Google Scholar
PubMed
Close
,
Brian H. Kahn Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Brian H. Kahn in
Current site
Google Scholar
PubMed
Close
,
Eric J. Fetzer Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Eric J. Fetzer in
Current site
Google Scholar
PubMed
Close
,
Sun Wong Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Sun Wong in
Current site
Google Scholar
PubMed
Close
,
Xianglei Huang Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan

Search for other papers by Xianglei Huang in
Current site
Google Scholar
PubMed
Close
, and
Mathias Schreier Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Mathias Schreier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations from multiple sensors on the NASA Aqua satellite are used to estimate the temporal and spatial variability of short-term cloud responses (CR) and cloud feedbacks λ for different cloud types, with respect to the interannual variability within the A-Train era (July 2002–June 2017). Short-term cloud feedbacks by cloud type are investigated both globally and locally by three different definitions in the literature: 1) the global-mean cloud feedback parameter λGG from regressing the global-mean cloud-induced TOA radiation anomaly ΔRG with the global-mean surface temperature change ΔTGS; 2) the local feedback parameter λLL from regressing the local ΔR with the local surface temperature change ΔTS; and 3) the local feedback parameter λGL from regressing global ΔRG with local ΔTS. Observations show significant temporal variability in the magnitudes and spatial patterns in λGG and λGL, whereas λLL remains essentially time invariant for different cloud types. The global-mean net λGG exhibits a gradual transition from negative to positive in the A-Train era due to a less negative λGG from low clouds and an increased positive λGG from high clouds over the warm pool region associated with the 2015/16 strong El Niño event. Strong temporal variability in λGL is intrinsically linked to its dependence on global ΔRG, and the scaling of λGL with surface temperature change patterns to obtain global feedback λGG does not hold. Despite the shortness of the A-Train record, statistically robust signals can be obtained for different cloud types and regions of interest.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0335.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Qing Yue, qing.yue@jpl.nasa.gov

Abstract

Observations from multiple sensors on the NASA Aqua satellite are used to estimate the temporal and spatial variability of short-term cloud responses (CR) and cloud feedbacks λ for different cloud types, with respect to the interannual variability within the A-Train era (July 2002–June 2017). Short-term cloud feedbacks by cloud type are investigated both globally and locally by three different definitions in the literature: 1) the global-mean cloud feedback parameter λGG from regressing the global-mean cloud-induced TOA radiation anomaly ΔRG with the global-mean surface temperature change ΔTGS; 2) the local feedback parameter λLL from regressing the local ΔR with the local surface temperature change ΔTS; and 3) the local feedback parameter λGL from regressing global ΔRG with local ΔTS. Observations show significant temporal variability in the magnitudes and spatial patterns in λGG and λGL, whereas λLL remains essentially time invariant for different cloud types. The global-mean net λGG exhibits a gradual transition from negative to positive in the A-Train era due to a less negative λGG from low clouds and an increased positive λGG from high clouds over the warm pool region associated with the 2015/16 strong El Niño event. Strong temporal variability in λGL is intrinsically linked to its dependence on global ΔRG, and the scaling of λGL with surface temperature change patterns to obtain global feedback λGG does not hold. Despite the shortness of the A-Train record, statistically robust signals can be obtained for different cloud types and regions of interest.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0335.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Qing Yue, qing.yue@jpl.nasa.gov

Supplementary Materials

    • Supplemental Materials (PDF 3.73 MB)
Save
  • Andrews, T., 2014: Using an AGCM to diagnose historical effective radiative forcing and mechanisms of recent decadal climate change. J. Climate, 27, 11931209, https://doi.org/10.1175/JCLI-D-13-00336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armour, K. C., C. M. Bitz, and G. H. Roe, 2013: Time-varying climate sensitivity from regional feedbacks. J. Climate, 26, 45184534, https://doi.org/10.1175/JCLI-D-12-00544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, W. L., T. S. Pagano, and V. V. Salomonson, 1998: Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens., 36, 10881100, https://doi.org/10.1109/36.700993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and B. Yu, 2003a: Climate sensitivity and climate state. Climate Dyn., 21, 167176, https://doi.org/10.1007/s00382-003-0323-7.

  • Boer, G. J., and B. Yu, 2003b: Climate sensitivity and response. Climate Dyn., 20, 415429, https://doi.org/10.1007/s00382-002-0283-3.

  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, https://doi.org/10.1175/JCLI3819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

  • Bretherton, C. S., 2015: Insights into low-latitude cloud feedbacks from high-resolution models. Philos. Trans. Roy. Soc., 373A, 20140415, https://doi.org/10.1098/rsta.2014.0415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., D. T. McCoy, and D. L. Hartmann, 2016: Observational evidence for a negative shortwave cloud feedback in middle to high latitudes. Geophys. Res. Lett., 43, 13311339, https://doi.org/10.1002/2015GL067499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., and Coauthors, 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926, https://doi.org/10.1175/BAMS-87-7-911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colman, R., and L. Hanson, 2017: On the relative strength of radiative feedbacks under climate variability and change. Climate Dyn., 49, 21152129, https://doi.org/10.1007/s00382-016-3441-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colman, R., and L. Hanson, 2018: Correction to: On the relative strength of radiative feedbacks under climate variability and change. Climate Dyn., 50, 47834785, https://doi.org/10.1007/s00382-017-4048-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., 2010: A determination of the cloud feedback from climate variations over the past decade. Science, 330, 15231527, https://doi.org/10.1126/science.1192546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., and N. G. Loeb, 2013: Impact of dataset choice on calculations of the short-term cloud feedback. J. Geophys. Res., 118, 28212826, https://doi.org/10.1002/jgrd.50199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldl, N., and G. H. Roe, 2013a: The nonlinear and nonlocal nature of climate feedbacks. J. Climate, 26, 82898304, https://doi.org/10.1175/JCLI-D-12-00631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldl, N., and G. H. Roe, 2013b: Four perspectives on climate feedbacks. Geophys. Res. Lett., 40, 40074011, https://doi.org/10.1002/grl.50711.

  • Feldl, N., D. M. W. Frierson, and G. H. Roe, 2014: The influence of regional feedbacks on circulation sensitivity. Geophys. Res. Lett., 41, 22122220, https://doi.org/10.1002/2014GL059336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M., and Coauthors, 2016: Recommendations for diagnosing effective radiative forcing from climate models for CMIP6. J. Geophys. Res., 121, 12 46012 475, https://doi.org/10.1002/2016JD025320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmosphere. J. Atmos. Sci., 49, 21392156, https://doi.org/10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GISTEMP Team, 2016: GISS Surface Temperature Analysis (GISTEMP). NASA Goddard Institute for Space Studies, accessed November 2017, http://data.giss.nasa.gov/gistemp/.

  • Gordon, N. D., and S. A. Klein, 2014: Low-cloud optical depth feedback in climate models. J. Geophys. Res., 119, 60526065, https://doi.org/10.1002/2013JD021052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and T. Andrews, 2016: Variation in climate sensitivity and feedback parameters during the historical period. Geophys. Res. Lett., 43, 39113920, https://doi.org/10.1002/2016GL068406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345.

  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5, 12811304, https://doi.org/10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holz, R. E., S. A. Ackerman, F. W. Nagle, R. Frey, S. Dutcher, R. E. Kuehn, M. A. Vaughan, and B. Baum, 2008: Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP. J. Geophys. Res., 113, D00A19, https://doi.org/10.1029/2008JD009837.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., and D. M. W. Frierson, 2010: Increasing atmospheric poleward energy transport with global warming. Geophys. Res. Lett., 37, L24807, https://doi.org/10.1029/2010GL045440.

    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and Coauthors, 2014: The Atmospheric Infrared Sounder version 6 cloud products. Atmos. Chem. Phys., 14, 399426, https://doi.org/10.5194/acp-14-399-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and A. Hall, 2015: Emergent constraints for cloud feedbacks. Curr. Clim. Change Rep., 1, 276287, https://doi.org/10.1007/s40641-015-0027-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., A. Hall, J. R. Norris, and R. Pincus, 2017: Low-cloud feedbacks from cloud-controlling factors: A review. Surv. Geophys., 38, 13071329, https://doi.org/10.1007/s10712-017-9433-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., and M. A. A. Rugenstein, 2015: Feedbacks, climate sensitivity and the limits of linear models. Philos. Trans. Roy. Soc., 373A, 20150146, https://doi.org/10.1098/rsta.2015.0146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambrigtsen, B. H., and S.-Y. Lee, 2003: Co-alignment and synchronization of the AIRS instrument suite. IEEE Trans. Geosci. Remote Sens., 41, 343351, https://doi.org/10.1109/TGRS.2002.808246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., N. Manalo-Smith, W. Su, M. Shankar, and S. Thomas, 2016: CERES top-of-atmosphere Earth radiation budget climate data record: Accounting for in-orbit changes in instrument calibration. Remote Sens., 8, 182, https://doi.org/10.3390/rs8030182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., R. Eastman, D. L. Hartmann, and R. Wood, 2017: The change in low cloud cover in a warmed climate inferred from AIRS, MODIS, and ECMWF-Interim reanalysis. J. Climate, 30, 36093620, https://doi.org/10.1175/JCLI-D-15-0734.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers, T. A., and J. R. Norris, 2015: On the relationships between subtropical clouds and meteorology in observations and CMIP3 and CMIP5 models. J. Climate, 28, 29452967, https://doi.org/10.1175/JCLI-D-14-00475.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers, T. A., and J. R. Norris, 2016: Reducing the uncertainty in subtropical cloud feedback, Geophys. Res. Lett., 43, 21442148, https://doi.org/10.1002/2015GL067416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Academies of Sciences, Engineering, and Medicine, 2018: Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space. The National Academies Press, 716 pp., https://doi.org/10.17226/24938.

    • Crossref
    • Export Citation
  • Norris, J. R., R. J. Allen, A. T. Evan, M. D. Zelinka, C. W. O’Dell, and S. A. Klein, 2016: Evidence for climate change in the satellite cloud data record. Nature, 536, 7275, https://doi.org/10.1038/nature18273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 2003: Aqua: An Earth-observing satellite mission to examine water and other climate variables. IEEE Trans. Geosci. Remote Sens., 41, 173183, https://doi.org/10.1109/TGRS.2002.808319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, R., S. Platnick, S. A. Ackerman, R. S. Hemler, and R. J. P. Hofmann, 2012: Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. J. Climate, 25, 46994720, https://doi.org/10.1175/JCLI-D-11-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, X., A. Hall, S. A. Klein, and A. DeAngelis, 2015: Positive tropical marine low-cloud cover feedback inferred from cloud-controlling factors. Geophys. Res. Lett., 42, 77677775, https://doi.org/10.1002/2015GL065627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243, 5763, https://doi.org/10.1126/science.243.4887.57.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 15471564, https://doi.org/10.1175/BAMS-84-11-1547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, G. H., N. Feldl, K. C. Armour, Y.-T. Hwang, and D. M. W. Frierson, 2015: The remote impacts of climate feedbacks on regional climate predictability. Nat. Geosci., 8, 135139, https://doi.org/10.1038/ngeo2346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., K. Armour, D. S. Battisti, N. Feldl, and D. Koll, 2014: The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett., 41, 10711078, https://doi.org/10.1002/2013GL058955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seethala, C., J. R. Norris, and T. A. Myers, 2015: How has subtropical stratocumulus and associated meteorology changed since the 1980s? J. Climate, 28, 83968410, https://doi.org/10.1175/JCLI-D-15-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shell, K. M., J. T. Kiehl, and C. A. Shields, 2008: Using the radiative kernel technique to calculate climate feedbacks in NCAR’s Community Atmospheric Model. J. Climate, 21, 22692282, https://doi.org/10.1175/2007JCLI2044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slingo, A., 1990: Sensitivity of the Earth’s radiation budget to changes in low clouds. Nature, 343, 4951, https://doi.org/10.1038/343049a0.

  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273, https://doi.org/10.1175/JCLI-3243.1.

  • Stevens, B., S. C. Sherwood, S. Bony, and M. J. Webb, 2016: Prospects for narrowing bounds on Earth’s equilibrium climate sensitivity. Earth’s Future, 4, 512522, https://doi.org/10.1002/2016EF000376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, H., and Coauthors, 2017: Tightening of Hadley ascent and tropical high cloud region key to precipitation change in a warmer climate. Nat. Commun., 8, 15771, https://doi.org/10.1038/ncomms15771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terai, C. R., M. Zelinka, and S. A. Klein, 2016: Constraining the low-cloud optical depth feedback at middle and high latitudes using satellite observations. J. Geophys. Res., 121, 96969716, https://doi.org/10.1002/2016JD025233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vial, J., J.-L. Dufresne, and S. Bony, 2013: On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Climate Dyn., 41, 33393362, https://doi.org/10.1007/s00382-013-1725-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, T., E. J. Fetzer, S. Wong, B. H. Kahn, and Q. Yue, 2016: Validation of MODIS cloud mask and multilayer flag using CloudSat-CALIPSO cloud profiles and a cross-reference of their cloud classifications. J. Geophys. Res., 121, 11 62011 635, https://doi.org/10.1002/2016JD025239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, M. J., and Coauthors, 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dyn., 27, 1738, https://doi.org/10.1007/s00382-006-0111-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, M. J., and Coauthors, 2017: The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6. Geosci. Model Dev., 10, 359384, https://doi.org/10.5194/gmd-10-359-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and M. J. Webb, 2009: A quantitative performance assessment of cloud regimes in climate models. Climate Dyn., 33, 141157, https://doi.org/10.1007/s00382-008-0443-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, Q., B. H. Kahn, E. J. Fetzer, and J. Teixeira, 2011: Relationship between oceanic boundary layer clouds and lower tropospheric stability observed by AIRS, CloudSat and CALIOP. J. Geophys. Res., 116, D18212, https://doi.org/10.1029/2011JD016136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, Q., E. J. Fetzer, B. H. Kahn, S. Wong, G. Manipon, A. Guilaume, and B. Wilson, 2013: Cloud-state-dependent sampling in AIRS observations based on CloudSat cloud classification. J. Climate, 26, 83578377, https://doi.org/10.1175/JCLI-D-13-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, Q., B. H. Kahn, E. J. Fetzer, M. Schreier, S. Wong, X. Chen, and X. Huang, 2016: Observation-based longwave cloud radiative kernels derived from the A-Train. J. Climate, 29, 20232040, https://doi.org/10.1175/JCLI-D-15-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, Q., B. H. Kahn, E. J. Fetzer, S. Wong, R. Frey, and K. G. Meyer, 2017: On the response of MODIS cloud coverage to global-mean surface air temperature. J. Geophys. Res. Atmos., 122, 966979, https://doi.org/10.1002/2016JD025174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012: Computing and partitioning cloud feedbacks using cloud property histograms. Part I: Cloud radiative kernels. J. Climate, 25, 37153735, https://doi.org/10.1175/JCLI-D-11-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., C. Zhou, and S. A. Klein, 2016: Insights from a refined decomposition of cloud feedbacks. Geophys. Res. Lett., 43, 92599269, https://doi.org/10.1002/2016GL069917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., J. J. Hack, J. T. Kiehl, and R. D. Cess, 1994: Diagnostic study of climate feedback processes in atmospheric general circulation models. J. Geophys. Res., 99, 55255537, https://doi.org/10.1029/93JD03523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., M. D. Zelinka, A. E. Dessler, and P. Yang, 2013: An analysis of the short-term cloud feedback using MODIS data. J. Climate, 26, 48034815, https://doi.org/10.1175/JCLI-D-12-00547.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., A. E. Dessler, M. D. Zelinka, P. Yang, and T. Wang, 2014: Cirrus feedback on interannual climate fluctuations. Geophys. Res. Lett., 41, 91669173, https://doi.org/10.1002/2014GL062095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., M. D. Zelinka, A. E. Dessler, and S. Klein, 2015: The relationship between interannual and long-term cloud feedback. Geophys. Res. Lett., 42, 10 46310 469, https://doi.org/10.1002/2015GL066698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., M. D. Zelinka, and S. A. Klein, 2016: Impact of decadal cloud variations on the Earth’s energy budget. Nat. Geosci., 9, 871874, https://doi.org/10.1038/ngeo2828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., M. D. Zelinka, and S. A. Klein, 2017: Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green’s function approach. J. Adv. Model. Earth Syst., 9, 21742189, https://doi.org/10.1002/2017MS001096.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 566 140 17
PDF Downloads 451 95 4