Are the Near-Antarctic Easterly Winds Weakening in Response to Enhancement of the Southern Annular Mode?

Julia E. Hazel Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Julia E. Hazel in
Current site
Google Scholar
PubMed
Close
and
Andrew L. Stewart Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Andrew L. Stewart in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous studies have highlighted the sensitivity of the Southern Ocean circulation to the strengthening, poleward-shifting westerlies, associated with the increasingly positive southern annular mode (SAM). The impacts of the SAM have been hypothesized to weaken momentum input to the ocean from the easterly winds around the Antarctic margins. Using ERA-Interim data, the authors show that the circumpolar-averaged easterly wind stress has not weakened over the past 3–4 decades, and, if anything, has slightly strengthened by around 7%. However, there has been a substantial increase in the seasonality of the easterlies, with a weakening of the easterly winds during austral summer and a strengthening during winter. A similar trend in the seasonality of the easterlies is found in three other reanalysis products that compare favorably with Antarctic meteorological observations. The authors associate the strengthening of the easterly winds during winter with an increase in the pressure gradient between the coast and the pole. Although the trend in the overall easterly wind strength is small, the change in the seasonal cycle may be expected to reduce the shoreward Ekman transport of summer surface waters and also to admit more warm Circumpolar Deep Water to the continental shelf in summer. Changes in the seasonal cycle of the near-coastal winds may also project onto seasonal formation and export of sea ice, fluctuations in the strengths of the Weddell and Ross Gyres, and seasonal export of Antarctic Bottom Water from the continental shelf.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Julia E. Hazel, jhazel@atmos.ucla.edu

Abstract

Previous studies have highlighted the sensitivity of the Southern Ocean circulation to the strengthening, poleward-shifting westerlies, associated with the increasingly positive southern annular mode (SAM). The impacts of the SAM have been hypothesized to weaken momentum input to the ocean from the easterly winds around the Antarctic margins. Using ERA-Interim data, the authors show that the circumpolar-averaged easterly wind stress has not weakened over the past 3–4 decades, and, if anything, has slightly strengthened by around 7%. However, there has been a substantial increase in the seasonality of the easterlies, with a weakening of the easterly winds during austral summer and a strengthening during winter. A similar trend in the seasonality of the easterlies is found in three other reanalysis products that compare favorably with Antarctic meteorological observations. The authors associate the strengthening of the easterly winds during winter with an increase in the pressure gradient between the coast and the pole. Although the trend in the overall easterly wind strength is small, the change in the seasonal cycle may be expected to reduce the shoreward Ekman transport of summer surface waters and also to admit more warm Circumpolar Deep Water to the continental shelf in summer. Changes in the seasonal cycle of the near-coastal winds may also project onto seasonal formation and export of sea ice, fluctuations in the strengths of the Weddell and Ross Gyres, and seasonal export of Antarctic Bottom Water from the continental shelf.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Julia E. Hazel, jhazel@atmos.ucla.edu
Save
  • Amante, C., and B. W. Eakins, 2009: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-24, 9 pp.

  • Amblas, D., and J. A. Dowdeswell, 2018: Physiographic influences on dense shelf-water cascading down the Antarctic continental slope. Earth-Sci. Rev., 185, 887900, https://doi.org/10.1016/j.earscirev.2018.07.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., 2013: Climatology and recent increase of westerly winds over the Amundsen Sea derived from six reanalyses. Int. J. Climatol., 33, 843851, https://doi.org/10.1002/joc.3473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and G. J. Marshall, 2012: The reliability of Antarctic tropospheric pressure and temperature in the latest global reanalyses. J. Climate, 25, 71387146, https://doi.org/10.1175/JCLI-D-11-00685.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., and R. L. Fogt, 2004: Strong trends in the skill of the ERA-40 and NCEP–NCAR reanalyses in the high and midlatitudes of the Southern Hemisphere, 1958–2001. J. Climate, 17, 46034619, https://doi.org/10.1175/3241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. P. Nicolas, and A. J. Monaghan, 2011: An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J. Climate, 24, 41894209, https://doi.org/10.1175/2011JCLI4074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clem, K. R., J. A. Renwick, J. McGregor, and R. L. Fogt, 2016: The relative influence of ENSO and SAM on Antarctic Peninsula climate. J. Geophys. Res. Atmos., 121, 93249341, https://doi.org/10.1002/2016JD025305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flexas, M. M., M. P. Schodlok, L. Padman, D. Menemenlis, and A. H. Orsi, 2015: Role of tides on the formation of the Antarctic Slope Front at the Weddell-Scotia Confluence. J. Geophys. Res. Oceans, 120, 36583680, https://doi.org/10.1002/2014JC010372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1973: Circulation and bottom water production in the Weddell Sea. Deep-Sea Res. Oceanogr. Abstr., 20, 111140, https://doi.org/10.1016/0011-7471(73)90048-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and R. W. Hallberg, 2000: On the relationship of the Circumpolar Current to Southern Hemisphere winds in coarse-resolution ocean models. J. Phys. Oceanogr., 30, 20132034, https://doi.org/10.1175/1520-0485(2000)030<2013:OTROTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1981: Seasonality of Southern Ocean sea ice. J. Geophys. Res., 86, 41934197, https://doi.org/10.1029/JC086iC05p04193.

  • Gordon, A. L., B. Huber, D. McKee, and M. Visbeck, 2010: A seasonal cycle in the export of bottom water from the Weddell Sea. Nat. Geosci., 3, 551556, https://doi.org/10.1038/ngeo916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., B. Huber, and J. Busecke, 2015: Bottom water export from the western Ross Sea, 2007 through 2010. Geophys. Res. Lett., 42, 53875394, https://doi.org/10.1002/2015GL064457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hattermann, T., L. H. Smedsrud, O. A. Nøst, J. M. Lilly, and B. K. Galton-Fenzi, 2014: Eddy-resolving simulations of the Fimbul Ice Shelf cavity circulation: Basal melting and exchange with the open ocean. Ocean Modell., 82, 2844, https://doi.org/10.1016/j.ocemod.2014.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haumann, F. A., N. Gruber, M. Münnich, I. Frenger, and S. Kern, 2016: Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature, 537, 8992, https://doi.org/10.1038/nature19101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heywood, K. J., and Coauthors, 2016: Between the devil and the deep blue sea: The role of the Amundsen Sea continental shelf in exchanges between ocean and ice shelves. Oceanography, 29 (4), 118129, https://doi.org/10.5670/oceanog.2016.104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hines, K. M., D. H. Bromwich, L.-S. Bai, M. Barlage, and A. G. Slater, 2011: Development and testing of polar WRF. Part III: Arctic land. J. Climate, 24, 2648, https://doi.org/10.1175/2010JCLI3460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., M. P. Meredith, D. P. Chambers, E. P. Abrahamsen, C. W. Hughes, and A. K. Morrison, 2015: Recent trends in the Southern Ocean eddy field. J. Geophys. Res. Oceans, 120, 257267, https://doi.org/10.1002/2014JC010470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, P. R., and R. Kwok, 2012: Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci., 5, 872875, https://doi.org/10.1038/ngeo1627.

  • Hughes, C. W., M. P. Meredith, and K. J. Heywood, 1999: Wind-driven transport fluctuations through the Drake Passage: A southern mode. J. Phys. Oceanogr., 29, 19711992, https://doi.org/10.1175/1520-0485(1999)029<1971:WDTFTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., 1991: On the nature and significance of the Antarctic Slope Front. Mar. Chem., 35, 924, https://doi.org/10.1016/S0304-4203(09)90005-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., P. Dutrieux, S. Jacobs, E. J. Steig, G. H. Gudmundsson, J. Smith, and K. J. Heywood, 2016: Decadal ocean forcing and Antarctic ice sheet response: Lessons from the Amundsen Sea. Oceanography, 29 (4), 106117, https://doi.org/10.5670/oceanog.2016.103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jullion, L., S. C. Jones, A. C. N. Garabato, and M. P. Meredith, 2010: Wind-controlled export of Antarctic Bottom Water from the Weddell Sea. Geophys. Res. Lett., 37, L09609, https://doi.org/10.1029/2010GL042822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jullion, L., A. C. N. Garabato, M. P. Meredith, P. R. Holland, P. Courtois, and B. A. King, 2013: Decadal freshening of the Antarctic Bottom Water exported from the Weddell Sea. J. Climate, 26, 81118125, https://doi.org/10.1175/JCLI-D-12-00765.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kida, S., 2011: The impact of open oceanic processes on the Antarctic Bottom Water outflows. J. Phys. Oceanogr., 41, 19411957, https://doi.org/10.1175/2011JPO4571.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodama, Y., and G. Wendler, 1986: Wind and temperature regime along the slope of Adélie Land, Antarctica. J. Geophys. Res., 91, 67356741, https://doi.org/10.1029/JD091iD06p06735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., S. S. Pang, and S. Kacimi, 2017: Sea ice drift in the Southern Ocean: Regional patterns, variability, and trends. Elem. Sci. Anthropocene, 5, 32, http://doi.org/10.1525/elementa.226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langlais, C. E., S. R. Rintoul, and J. D. Zika, 2015: Sensitivity of Antarctic Circumpolar Current transport and eddy activity to wind patterns in the Southern Ocean. J. Phys. Oceanogr., 45, 10511067, https://doi.org/10.1175/JPO-D-14-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenton, A., and R. J. Matear, 2007: Role of the southern annular mode (SAM) in Southern Ocean CO2 uptake. Global Biogeochem. Cycles, 21, GB2016, https://doi.org/10.1029/2006GB002714.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leppäranta, M., 2011: The Drift of Sea Ice. Springer, 347 pp.

    • Crossref
    • Export Citation
  • Lüpkes, C., and G. Birnbaum, 2005: Surface drag in the Arctic marginal sea-ice zone: A comparison of different parameterisation concepts. Bound.-Layer Meteor., 117, 179211, https://doi.org/10.1007/s10546-005-1445-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, https://doi.org/10.1038/ngeo1391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathiot, P., H. Goosse, T. Fichefet, B. Barnier, and H. Gallée, 2011: Modelling the seasonal variability of the Antarctic Slope Current. Ocean Sci., 7, 455470, https://doi.org/10.5194/os-7-455-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKee, D. C., X. Yuan, A. L. Gordon, B. A. Huber, and Z. Dong, 2011: Climate impact on interannual variability of Weddell Sea Bottom Water. J. Geophys. Res., 116, C05020, https://doi.org/10.1029/2010JC006484.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1991: A reexamination of the mechanism of the semiannual oscillation in the Southern Hemisphere. J. Climate, 4, 911926, https://doi.org/10.1175/1520-0442(1991)004<0911:AROTMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meijers, A. J. S., M. P. Meredith, E. P. Abrahamsen, M. A. M. Maqueda, D. C. Jones, and A. C. N. Garabato, 2016: Wind-driven export of Weddell Sea slope water. J. Geophys. Res. Oceans, 121, 75307546, https://doi.org/10.1002/2016JC011757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., and A. M. Hogg, 2006: Circumpolar response of Southern Ocean eddy activity to a change in the southern annular mode. Geophys. Res. Lett., 33, L16608, https://doi.org/10.1029/2006GL026499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., A. C. N. Garabato, A. L. Gordon, and G. C. Johnson, 2008: Evolution of the deep and bottom waters of the Scotia Sea, Southern Ocean, during 1995–2005. J. Climate, 21, 33273343, https://doi.org/10.1175/2007JCLI2238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and E. Palmén, 1951: Note on the dynamics of the Antarctic Circumpolar Current. Tellus, 3, 5355, https://doi.org/10.3402/tellusa.v3i1.8609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nøst, O. A., M. Biuw, V. Tverberg, C. Lydersen, T. Hattermann, Q. Zhou, L. H. Smedsrud, and K. M. Kovacs, 2011: Eddy overturning of the Antarctic Slope Front controls glacial melting in the eastern Weddell Sea. J. Geophys. Res., 116, C11014, https://doi.org/10.1029/2011JC006965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and K. T. Waight III, 1987: The forcing of Antarctic katabatic winds. Mon. Wea. Rev., 115, 22142226, https://doi.org/10.1175/1520-0493(1987)115<2214:TFOAKW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and D. H. Bromwich, 1997: On the forcing of seasonal changes in surface pressure over Antarctica. J. Geophys. Res., 102, 13 78513 792, https://doi.org/10.1029/96JD02959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and D. H. Bromwich, 2007: Reexamination of the near-surface airflow over the Antarctic continent and implications on atmospheric circulations at high southern latitudes. Mon. Wea. Rev., 135, 19611973, https://doi.org/10.1175/MWR3374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., P. Pettré, and G. Wendler, 1993: The influence of large-scale forcing on the katabatic wind regime at Adélie Land, Antarctica. Meteor. Atmos. Phys., 51, 165176, https://doi.org/10.1007/BF01030492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powers, J. G., A. J. Monaghan, A. M. Cayette, D. H. Bromwich, Y.-H. Kuo, and K. W. Manning, 2003: Real-time mesoscale modeling over Antarctica: The Antarctic Mesoscale Prediction System. Bull. Amer. Meteor. Soc., 84, 15331545, https://doi.org/10.1175/BAMS-84-11-1533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powers, J. G., K. W. Manning, D. H. Bromwich, J. J. Cassano, and A. M. Cayette, 2012: A decade of Antarctic science support through AMPS. Bull. Amer. Meteor. Soc., 93, 16991712, https://doi.org/10.1175/BAMS-D-11-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2010: Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 63366351, https://doi.org/10.1175/2010JCLI3682.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., G. W. K. Moore, P. S. Guest, and K. Bumke, 2002: A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses. J. Phys. Oceanogr., 32, 383400, https://doi.org/10.1175/1520-0485(2002)032<0383:ACOSLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., S. Jacobs, J. Mouginot, and B. Scheuchl, 2013: Ice-shelf melting around Antarctica. Science, 341, 266270, https://doi.org/10.1126/science.1235798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rintoul, S., 2010: Antarctic Circumpolar Current. Ocean Currents, 1st ed. J. Steele, S. Thorpe, and K. Turekian, Eds., Academic Press, 196–208.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., K. G. Speer, and S. R. Rintoul, 2010: Zonally asymmetric response of the Southern Ocean mixed-layer depth to the southern annular mode. Nat. Geosci., 3, 273279, https://doi.org/10.1038/ngeo812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidtko, S., K. J. Heywood, A. F. Thompson, and S. Aoki, 2014: Multi-decadal warming of Antarctic waters. Science, 346, 12271231, https://doi.org/10.1126/science.1256117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., and G. A. Schmidt, 2004: Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Geophys. Res. Lett., 31, L18209, https://doi.org/10.1029/2004GL020724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and D. A. Jones, 1998: The mean structure and temporal variability of the semiannual oscillation in the southern extratropics. Int. J. Climatol., 18, 473504, https://doi.org/10.1002/(SICI)1097-0088(199804)18:5<473::AID-JOC266>3.0.CO;2-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. R., P. J. Hughes, and M. A. Bourassa, 2011: A comparison of nine monthly air–sea flux products. Int. J. Climatol., 31, 10021027, https://doi.org/10.1002/joc.2225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spence, P., S. M. Griffies, M. H. England, A. M. Hogg, O. A. Saenko, and N. C. Jourdain, 2014: Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett., 41, 46014610, https://doi.org/10.1002/2014GL060613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stark, J. D., C. J. Donlon, M. J. Martin, and M. E. McCulloch, 2007: OSTIA: An operational, high resolution, real time, global sea surface temperature analysis system. Oceans 2007—Europe, Aberdeen, Scotland, IEEE, 061214-029, http://ghrsst-pp.metoffice.com/pages/latest_analysis/docs/Stark_et_al_OSTIA_description_Oceans07.pdf.

    • Crossref
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2012: Sensitivity of the ocean’s deep overturning circulation to easterly Antarctic winds. Geophys. Res. Lett., 39, L18604, https://doi.org/10.1029/2012GL053099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2013: Connecting Antarctic cross-slope exchange with Southern Ocean overturning. J. Phys. Oceanogr., 43, 14531471, https://doi.org/10.1175/JPO-D-12-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2015a: Eddy-mediated transport of warm Circumpolar Deep Water across the Antarctic Shelf Break. Geophys. Res. Lett., 42, 432440, https://doi.org/10.1002/2014GL062281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2015b: The neutral density temporal residual mean overturning circulation. Ocean Modell., 90, 4456, https://doi.org/10.1016/j.ocemod.2015.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2016: Eddy generation and jet formation via dense water outflows across the Antarctic continental slope. J. Phys. Oceanogr., 46, 37293750, https://doi.org/10.1175/JPO-D-16-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., A. Klocker, and D. Menemenlis, 2018: Circum-Antarctic shoreward heat transport derived from an eddy- and tide-resolving simulation. Geophys. Res. Lett., 45, 834845, https://doi.org/10.1002/2017GL075677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, Z., A. L. Stewart, and A. F. Thompson, 2014: An idealized model of Weddell Gyre export variability. J. Phys. Oceanogr., 44, 16711688, https://doi.org/10.1175/JPO-D-13-0263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and J. C. Fyfe, 2012: Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys. Res. Lett., 39, L16711, https://doi.org/10.1029/2012GL052810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thoma, M., A. Jenkins, D. Holland, and S. Jacobs, 2008: Modelling Circumpolar Deep Water intrusions on the Amundsen Sea Continental Shelf, Antarctica. Geophys. Res. Lett., 35, L18602, https://doi.org/10.1029/2008GL034939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., K. J. Heywood, S. Schmidtko, and A. L. Stewart, 2014: Eddy transport as a key component of the Antarctic Overturning Circulation. Nat. Geosci., 7, 879884, https://doi.org/10.1038/ngeo2289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, https://doi.org/10.1126/science.1069270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., and Coauthors, 2005: Antarctic climate change during the last 50 years. Int. J. Climatol., 25, 279294, https://doi.org/10.1002/joc.1130.

  • Turner, J., T. Phillips, J. S. Hosking, G. J. Marshall, and A. Orr, 2013: The Amundsen Sea low. Int. J. Climatol., 33, 18181829, https://doi.org/10.1002/joc.3558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., W. Cai, and A. Purich, 2014: Trends in Southern Hemisphere wind-driven circulation in CMIP5 models over the 21st century: Ozone recovery versus greenhouse forcing. J. Geophys. Res. Oceans, 119, 29742986, https://doi.org/10.1002/2013JC009589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., S. Danilov, E. Fahrbach, J. Schröter, and T. Jung, 2012: On the impact of wind forcing on the seasonal variability of Weddell Sea Bottom Water transport. Geophys. Res. Lett., 39, L06603, https://doi.org/10.1029/2012GL051198.

    • Search Google Scholar
    • Export Citation
  • Zhou, Q., T. Hattermann, O. A. Nøst, M. Biuw, K. M. Kovacs, and C. Lydersen, 2014: Wind-driven spreading of fresh surface water beneath ice shelves in the eastern Weddell Sea. J. Geophys. Res. Oceans, 119, 38183833, https://doi.org/10.1002/2013JC009556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zika, J. D., J. Le Sommer, C. O. Dufour, A. Naveira-Garabato, and A. Blaker, 2013: Acceleration of the Antarctic Circumpolar Current by wind stress along the coast of Antarctica. J. Phys. Oceanogr., 43, 27722784, https://doi.org/10.1175/JPO-D-13-091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1012 276 43
PDF Downloads 912 258 40