The Global Radiative Energy Budget in MERRA and MERRA-2: Evaluation with Respect to CERES EBAF Data

Laura M. Hinkelman Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington

Search for other papers by Laura M. Hinkelman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The representation of the long-term radiative energy budgets in NASA’s MERRA and MERRA-2 reanalyses has been evaluated, emphasizing changes associated with the reanalysis system update. Data from the CERES EBAF Edition 2.8 satellite product over 2001–15 were used as a reference. For both MERRA and MERRA-2, the climatological global means of most TOA radiative flux terms agree to within ~3 W m−2 of EBAF. However, MERRA-2’s all-sky reflected shortwave flux is ~7 W m−2 higher than either MERRA or EBAF’s, resulting in a net TOA flux imbalance of −4 W m−2. At the surface, all-sky downward longwave fluxes are problematic for both reanalyses, while high clear-sky downward shortwave fluxes indicate that their atmospheres are too transmissive. Although MERRA-2’s individual all-sky flux terms agree better with EBAF, its net flux agreement is worse (−8.3 vs −3.3 W m−2 for MERRA) because MERRA benefits from cancellation of errors. Analysis by region and surface type gives mixed outcomes. The results consistently indicate that clouds are overrepresented over the tropical oceans in both reanalyses, particularly MERRA-2, and somewhat underrepresented in marine stratocumulus areas. MERRA-2 also exhibits signs of excess cloudiness in the Southern Ocean. Notable discrepancies occur in the polar regions, where the effects of snow and ice cover are important. In most cases, MERRA-2 better represents variability and trends in the global mean radiative fluxes over the period of analysis. Overall, the performance of MERRA-2 relative to MERRA is mixed; there is still room for improvement in the radiative fluxes in this family of reanalysis products.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

ORCID: 0000-0001-6477-9648.

Corresponding author: Dr. Laura Hinkelman, laurahin@uw.edu

This article is included in the Modern Era Retrospective-Analysis for Research and Applications (MERRA) special collection.

Abstract

The representation of the long-term radiative energy budgets in NASA’s MERRA and MERRA-2 reanalyses has been evaluated, emphasizing changes associated with the reanalysis system update. Data from the CERES EBAF Edition 2.8 satellite product over 2001–15 were used as a reference. For both MERRA and MERRA-2, the climatological global means of most TOA radiative flux terms agree to within ~3 W m−2 of EBAF. However, MERRA-2’s all-sky reflected shortwave flux is ~7 W m−2 higher than either MERRA or EBAF’s, resulting in a net TOA flux imbalance of −4 W m−2. At the surface, all-sky downward longwave fluxes are problematic for both reanalyses, while high clear-sky downward shortwave fluxes indicate that their atmospheres are too transmissive. Although MERRA-2’s individual all-sky flux terms agree better with EBAF, its net flux agreement is worse (−8.3 vs −3.3 W m−2 for MERRA) because MERRA benefits from cancellation of errors. Analysis by region and surface type gives mixed outcomes. The results consistently indicate that clouds are overrepresented over the tropical oceans in both reanalyses, particularly MERRA-2, and somewhat underrepresented in marine stratocumulus areas. MERRA-2 also exhibits signs of excess cloudiness in the Southern Ocean. Notable discrepancies occur in the polar regions, where the effects of snow and ice cover are important. In most cases, MERRA-2 better represents variability and trends in the global mean radiative fluxes over the period of analysis. Overall, the performance of MERRA-2 relative to MERRA is mixed; there is still room for improvement in the radiative fluxes in this family of reanalysis products.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

ORCID: 0000-0001-6477-9648.

Corresponding author: Dr. Laura Hinkelman, laurahin@uw.edu

This article is included in the Modern Era Retrospective-Analysis for Research and Applications (MERRA) special collection.

Save
  • Bacmeister, J. T., M. J. Suarez, and F. R. Robertson, 2006: Rain reevaporation, boundary layer–convection interactions, and Pacific rainfall patterns in an AGCM. J. Atmos. Sci., 63, 33833403, https://doi.org/10.1175/JAS3791.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blunden, J., and D. S. Arndt, 2017: State of the climate in 2016. Bull. Amer. Meteor. Soc., 98, SiS280, https://doi.org/10.1175/2017BAMSStateoftheClimate.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., F. R. Robertson, and J. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, 24, 57215739, https://doi.org/10.1175/2011JCLI4175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and Coauthors, 2015: MERRA-2: Initial evaluation of the climate. NASA Tech. Memo. NASA/TM-2015-104606, Vol. 43, 145 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich803.pdf.

  • Buchard, V., and Coauthors, 2017: The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case studies. J. Climate, 30, 68516872, https://doi.org/10.1175/JCLI-D-16-0613.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CERES Science Team, 2014: CERES_EBAF_Ed2.8: Data quality summary (March 19, 2014). CERES Tech. Rep., 52 pp., https://ceres.larc.nasa.gov/documents/DQ_summaries/CERES_EBAF_Ed2.8_DQS.pdf.

  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Memo. NASA/TM-1999-104606, Vol. 15, 51 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19990060930.pdf.

  • Chou, M.-D., M. J. Suarez, X.-Z. Liang, and M. M.-H. Yan, 2001: A thermal infrared radiation parameterization for atmospheric studies. NASA Tech. Memo. NASA/TM-2001-104606, Vol. 19, 68 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010072848.pdf.

  • Colarco, P., A. da Silva, M. Chin, and T. Diehl, 2010: Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res., 115, D14207, https://doi.org/10.1029/2009JD012820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collow, A. B. M., and M. A. Miller, 2016: The seasonal cycle of the radiation budget and cloud radiative effect in the Amazon rain forest of Brazil. J. Climate, 29, 77037722, https://doi.org/10.1175/JCLI-D-16-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., and M. G. Bosilovich, 2012: The energy budget of the polar atmosphere in MERRA. J. Climate, 25, 524, https://doi.org/10.1175/2011JCLI4138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., and S. M. J. Nowicki, 2018: Greenland ice sheet surface melt and its relation to daily atmospheric conditions. J. Climate, 31, 18971919, https://doi.org/10.1175/JCLI-D-17-0447.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., and Coauthors, 2013: Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Oceanic Technol., 30, 10721090, https://doi.org/10.1175/JTECH-D-12-00136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolinar, E. K., X. Dong, and B. Xi, 2016: Evaluation and intercomparison of clouds, precipitation, and radiation budgets in recent reanalyses using satellite-surface observations. Climate Dyn., 46, 21232144, https://doi.org/10.1007/s00382-015-2693-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2012: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116, 140158, https://doi.org/10.1016/j.rse.2010.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draper, C., R. Reichle, G. De Lannoy, and B. Scarino, 2015: A dynamic approach to addressing observation-minus-forecast bias in a land surface skin temperature data assimilation system. J. Hydrometeor., 16, 449464, https://doi.org/10.1175/JHM-D-14-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draper, C., R. Reichle, and R. D. Koster, 2018: Assessment of MERRA-2 land surface energy flux estimates. J. Climate, 31, 671691, https://doi.org/10.1175/JCLI-D-17-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GMAO, 2008: tavgM_2d_rad_Nx: MERRA 2D IAU diagnostic, radiation surface and TOA, monthly mean V5.2.0. GES DISC, accessed July 2016, https://doi.org/10.5067/6UX3EDUNVUFK.

    • Crossref
    • Export Citation
  • GMAO, 2015: MERRA-2 tavgM_2d_rad_Nx: 2d, monthly mean, time-averaged, single-level, assimilation, radiation diagnostics V5.12.4. GES DISC, accessed July 2016, https://doi.org/10.5067/OU3HJDS973O0.

    • Crossref
    • Export Citation
  • Helfand, H. M., and S. D. Schubert, 1995: Climatology of the simulated Great Plains low-level jet and its contribution to the continental moisture budget of the United States. J. Climate, 8, 784806, https://doi.org/10.1175/1520-0442(1995)008<0784:COTSGP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., 2014: CERES level 3 EBAF-Surface Terra+Aqua netCDF file—Edition 2.8. NASA Langley Atmospheric Science Data Center DAAC, accessed July 2016. https://doi.org/10.5067/Terra+Aqua/CERES/EBAF-Surface_L3B.002.8.

    • Crossref
    • Export Citation
  • Kato, S., N. G. Loeb, D. A. Rutan, F. G. Rose, S. Sun-Mack, W. F. Miller, and Y. Chen, 2012: Uncertainty estimate of surface irradiances computed with MODIS-, CALIPSO-, and CloudSat-derived cloud and aerosol properties. Surv. Geophys., 33, 395412, https://doi.org/10.1007/s10712-012-9179-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., N. G. Loeb, F. G. Rose, D. R. Doelling, D. A. Rutan, T. E. Caldwell, L. Yu, and R. A. Weller, 2013: Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Climate, 26, 27192740, https://doi.org/10.1175/JCLI-D-12-00436.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., and Coauthors, 2018: Surface irradiances of Edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product. J. Climate, 31, 45014527, https://doi.org/10.1175/JCLI-D-17-0523.1.

    • Search Google Scholar
    • Export Citation
  • Kopp, G., and G. Lawrence, 2005: The Total Irradiance Monitor (TIM): Instrument design. Sol. Phys., 230, 91109, https://doi.org/10.1007/s11207-005-7446-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kopp, G., and J. L. Lean, 2011: A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett., 38, L01706, https://doi.org/10.1029/2010GL045777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • La, H. S., and K. Park, 2016: The evident role of clouds on phytoplankton abundance in Antarctic coastal polynyas. Terr. Atmos. Ocean. Sci., 27, 293301, https://doi.org/10.3319/TAO.2015.11.30.01(Oc).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and Coauthors, 2015: The observed state of the energy budget in the early twenty-first century. J. Climate, 28, 83198346, https://doi.org/10.1175/JCLI-D-14-00556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letterly, A., J. Key, and Y. Liu, 2016: The influence of winter cloud on summer sea ice in the Arctic, 1983–2013. J. Geophys. Res. Atmos., 121, 21782187, https://doi.org/10.1002/2015JD024316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., 2014: CERES EBAF-TOA edition 2.8. NASA Langley Research Center Atmospheric Science Data Center DAAC, accessed July 2016. https://doi.org/10.5067/Terra+Aqua/CERES/EBAF-TOA_L3B.002.8.

    • Crossref
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, https://doi.org/10.1175/2008JCLI2637.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., and Coauthors, 2018: Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) top-of-atmosphere (TOA) Edition-4.0 data product. J. Climate, 31, 895918, https://doi.org/10.1175/JCLI-D-17-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202, https://doi.org/10.1007/BF00117978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., L. L. Takacs, M. J. Suarez, J. T. Bacmeister, I.-S. Song, and A. Eichmann, 2012: The GEOS-5 atmospheric general circulation model: Mean climate and development from MERRA to Fortuna. NASA Tech. Rep. NASA/TM-2012-104606, Vol 28, 117 pp., https://gmao.gsfc.nasa.gov/pubs/docs/tm28.pdf.

  • Molod, A., L. L. Takacs, M. J. Suarez, and J. T. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa-Schubert. A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002, https://doi.org/10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and Coauthors, 2012: The continual intercomparison of radiation codes: Results from phase I. J. Geophys. Res., 117, D06118, https://doi.org/10.1029/2011JD016821.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., S. Platnick, S. A. Ackerman, R. S. Hemler, and R. J. P. Hofmann, 2012: Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. J. Climate, 25, 46994720, https://doi.org/10.1175/JCLI-D-11-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., A. R. Jongeward, C.-Y. Hsu, and G. L. Potter, 2012: Object-based evaluation of MERRA cloud physical properties and radiative fluxes during the 1998 El Niño–La Niña transition. J. Climate, 25, 73137327, https://doi.org/10.1175/JCLI-D-11-00724.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radkevich, A., K. Khlopenkov, D. Rutan, and S. Kato, 2013: A supplementary clear-sky snow and ice recognition technique for CERES level 2 products. J. Atmos. Oceanic Technol., 30, 557568, https://doi.org/10.1175/JTECH-D-12-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randles, C. A., and Coauthors, 2017: The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J. Climate, 30, 68236850, https://doi.org/10.1175/JCLI-D-16-0609.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 data assimilation system—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA Tech. Rep. NASA/TM-2008-104606, Vol. 27, 118 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Rienecker369.pdf.

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutan, D. A., S. Kato, D. R. Doelling, F. G. Rose, L. T. Nguyen, T. E. Caldwell, and N. G. Loeb, 2015: CERES synoptic product: Methodology and validation of surface radiant flux. J. Atmos. Oceanic Technol., 32, 11211143, https://doi.org/10.1175/JTECH-D-14-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shekhar, R., and W. R. Boos, 2017: Weakening and shifting of the Saharan shallow meridional circulation during wet years of the West African monsoon. J. Climate, 30, 73997422, https://doi.org/10.1175/JCLI-D-16-0696.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., T. Nakajima, M. Satoh, and H.-S. Jang, 2010: Impact of different definitions of clear-sky flux on the determination of longwave cloud radiative forcing: NICAM simulation results. Atmos. Chem. Phys., 10, 11 64111 646, https://doi.org/10.5194/acp-10-11641-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Y. Zhang, J. T. Fasullo, and S. Taguchi, 2015: Climate variability and relationships between top-of-atmosphere radiation and temperatures on Earth. J. Geophys. Res. Atmos., 120, 36423659, https://doi.org/10.1002/2014JD022887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Urankar, G., T. V. Prabha, G. Pandithurai, P. Pallavi, D. Achuthavarier, and B. N. Goswami, 2012: Aerosol and cloud feedbacks on surface energy balance over selected regions of the Indian subcontinent. J. Geophys. Res., 117, D04210, https://doi.org/10.1029/2011JD016363.

    • Search Google Scholar
    • Export Citation
  • Wang, A., and X. Zeng, 2012: Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res., 117, D05102, https://doi.org/10.1029/2011JD016553.

    • Search Google Scholar
    • Export Citation
  • Wang, K., and R. E. Dickinson, 2013: Global atmospheric downward longwave radiation at the surface from ground-based observations, satellite retrievals, and reanalyses. Rev. Geophys., 51, 150185, https://doi.org/10.1002/rog.20009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zib, B. J., X. Dong, B. Xi, and A. Kennedy, 2012: Evaluation and intercomparison of cloud fraction and radiative fluxes in recent reanalyses over the Arctic using BSRN surface observations. J. Climate, 25, 22912305, https://doi.org/10.1175/JCLI-D-11-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2294 674 156
PDF Downloads 1564 301 42