Subgrid Precipitation Properties of Mesoscale Atmospheric Systems Represented by MODIS Cloud Regimes

Jackson Tan Universities Space Research Association, Columbia, and NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Jackson Tan in
Current site
Google Scholar
PubMed
Close
and
Lazaros Oreopoulos Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Lazaros Oreopoulos in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The distribution of mesoscale precipitation exhibits diverse patterns: precipitation can be intense but sporadic, or it can be light but widespread. This range of behaviors is a reflection of the different weather systems in the global atmosphere. Using MODIS global cloud regimes as proxies for different atmospheric systems, this study investigates the subgrid precipitation properties within these systems. Taking advantage of the high resolution of Integrated Multisatellite Retrievals for GPM (IMERG; GPM is the Global Precipitation Measurement mission), precipitation values at 0.1° are composited with each cloud regime at 1° grid cells to characterize the regime’s spatial subgrid precipitation properties. The results reveal the diversity of the subgrid precipitation behavior of the atmospheric systems. Organized convection is associated with the highest grid-mean precipitation rates and precipitating fraction, although on average only half the grid is precipitating and there is substantial variability between different occurrences. Summer extratropical storms have the next highest precipitation, driven mainly by moderate precipitation rates over large areas. These systems produce more precipitation than isolated convective systems, for which the lower precipitating fractions balance out the high intensities. Most systems produce heavier precipitation in the afternoon than in the morning. The grid-mean precipitation rate is also found to scale with the fraction of precipitation within the grid in a faster-than-linear relationship for most systems. This study elucidates the precipitation properties within cloud regimes, thus advancing our understanding of the precipitation structures of these atmospheric systems.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jackson Tan, jackson.tan@nasa.gov

Abstract

The distribution of mesoscale precipitation exhibits diverse patterns: precipitation can be intense but sporadic, or it can be light but widespread. This range of behaviors is a reflection of the different weather systems in the global atmosphere. Using MODIS global cloud regimes as proxies for different atmospheric systems, this study investigates the subgrid precipitation properties within these systems. Taking advantage of the high resolution of Integrated Multisatellite Retrievals for GPM (IMERG; GPM is the Global Precipitation Measurement mission), precipitation values at 0.1° are composited with each cloud regime at 1° grid cells to characterize the regime’s spatial subgrid precipitation properties. The results reveal the diversity of the subgrid precipitation behavior of the atmospheric systems. Organized convection is associated with the highest grid-mean precipitation rates and precipitating fraction, although on average only half the grid is precipitating and there is substantial variability between different occurrences. Summer extratropical storms have the next highest precipitation, driven mainly by moderate precipitation rates over large areas. These systems produce more precipitation than isolated convective systems, for which the lower precipitating fractions balance out the high intensities. Most systems produce heavier precipitation in the afternoon than in the morning. The grid-mean precipitation rate is also found to scale with the fraction of precipitation within the grid in a faster-than-linear relationship for most systems. This study elucidates the precipitation properties within cloud regimes, thus advancing our understanding of the precipitation structures of these atmospheric systems.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jackson Tan, jackson.tan@nasa.gov
Save
  • Bodas-Salcedo, A., K. D. Williams, P. R. Field, and A. P. Lock, 2012: The surface downwelling solar radiation surplus over the Southern Ocean in the Met Office Model: The role of midlatitude cyclone clouds. J. Climate, 25, 74677486, https://doi.org/10.1175/JCLI-D-11-00702.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2014: Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Climate, 27, 4156, https://doi.org/10.1175/JCLI-D-13-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and A. D. Del Genio, 2009: Evaluation of tropical cloud regimes in observations and a general circulation model. Climate Dyn., 32, 355369, https://doi.org/10.1007/s00382-008-0386-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., S. Hagos, A. K. Rowe, C. D. Burleyson, M. N. Martini, and S. P. de Szoeke, 2015: Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign. J. Adv. Model. Earth Syst., 7, 357381, https://doi.org/10.1002/2014MS000384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, N. D., J. R. Norris, C. P. Weaver, and S. A. Klein, 2005: Cluster analysis of cloud regimes and characteristic dynamics of midlatitude synoptic systems in observations and a model. J. Geophys. Res., 110, D15S17, https://doi.org/10.1029/2004JD005027.

    • Search Google Scholar
    • Export Citation
  • Handlos, Z. J., and L. E. Back, 2014: Estimating vertical motion profile shape within tropical weather states over the oceans. J. Climate, 27, 76677686, https://doi.org/10.1175/JCLI-D-13-00602.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., C. Jakob, W. B. Rossow, G. Tselioudis, and J. Brown, 2011: Major characteristics of Southern Ocean cloud regimes and their effects on the energy budget. J. Climate, 24, 50615080, https://doi.org/10.1175/2011JCLI4052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and B. Stevens, 2013: Preconditioning deep convection with cumulus congestus. J. Atmos. Sci., 70, 448464, https://doi.org/10.1175/JAS-D-12-089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425461, https://doi.org/10.1002/qj.49711548702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.

  • Houze, R. A., K. L. Rasmussen, M. D. Zuluaga, and S. R. Brodzik, 2015: The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Rev. Geophys., 53, 9941021, https://doi.org/10.1002/2015RG000488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubanks, P., S. Platnick, M. King, and B. Ridgway, 2018: MODIS Atmosphere L3 Gridded Product Algorithm Theoretical Basis Document (ATBD) & Users Guide. MODIS Atmosphere Group, 122 pp., https://modis-images.gsfc.nasa.gov/_docs/L3_ATBD_C6.pdf.

  • Huffman, G. J., and Coauthors, 2018: GPM Integrated Multi-Satellite Retrievals for GPM (IMERG) Algorithm Theoretical Basis Document (ATBD) v5.2, NASA, 31 pp., https://pmm.nasa.gov/resources/documents/gpm-integrated-multi-satellite-retrievals-gpm-imerg-algorithm-theoretical-basis-.

  • Jakob, C., and G. Tselioudis, 2003: Objective identification of cloud regimes in the tropical western Pacific. Geophys. Res. Lett., 30, 2082, https://doi.org/10.1029/2003GL018367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakob, C., and C. Schumacher, 2008: Precipitation and latent heating characteristics of the major tropical western Pacific cloud regimes. J. Climate, 21, 43484364, https://doi.org/10.1175/2008JCLI2122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakob, C., G. Tselioudis, and T. Hume, 2005: The radiative, cloud, and thermodynamic properties of the major tropical western Pacific cloud regimes. J. Climate, 18, 12031215, https://doi.org/10.1175/JCLI3326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, D., L. Oreopoulos, and D. Lee, 2017: Regime-based evaluation of cloudiness in CMIP5 models. Climate Dyn., 48, 89112, https://doi.org/10.1007/s00382-016-3064-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, D., L. Oreopoulos, D. Lee, N. Cho, and J. Tan, 2018: Contrasting the co-variability of daytime cloud and precipitation over tropical land and ocean. Atmos. Chem. Phys., 18, 30653082, https://doi.org/10.5194/acp-18-3065-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. D., S. Platnick, W. P. Menzel, S. A. Ackerman, and P. A. Hubanks, 2013: Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites. IEEE Trans. Geosci. Remote Sens., 51, 38263852, https://doi.org/10.1109/TGRS.2012.2227333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D., L. Oreopoulos, G. J. Huffman, W. B. Rossow, and I.-S. Kang, 2013: The precipitation characteristics of ISCCP tropical weather states. J. Climate, 26, 772788, https://doi.org/10.1175/JCLI-D-11-00718.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., M. D. Lebsock, L. Oreopoulos, and N. Cho, 2016: Interregional differences in MODIS-derived cloud regimes. J. Geophys. Res. Atmos., 121, 11 64811 665, https://doi.org/10.1002/2016JD025193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., C. Schumacher, and S. A. McFarlane, 2013: Radiative heating of the ISCCP upper level cloud regimes and its impact on the large-scale tropical circulation. J. Geophys. Res. Atmos., 118, 592604, https://doi.org/10.1002/jgrd.50114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, S., C. Jakob, A. Protat, and J. Delanoë, 2014: Characterizing observed midtopped cloud regimes associated with Southern Ocean shortwave radiation biases. J. Climate, 27, 61896203, https://doi.org/10.1175/JCLI-D-14-00139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, S., J. K. Fletcher, J. M. Haynes, C. Franklin, A. Protat, and C. Jakob, 2015: A hybrid cloud regime methodology used to evaluate Southern Ocean cloud and shortwave radiation errors in ACCESS. J. Climate, 28, 60016018, https://doi.org/10.1175/JCLI-D-14-00846.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mekonnen, A., and W. B. Rossow, 2011: The interaction between deep convection and easterly waves over tropical North Africa: A weather state perspective. J. Climate, 24, 42764294, https://doi.org/10.1175/2011JCLI3900.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mekonnen, A., and W. B. Rossow, 2018: The interaction between deep convection and easterly wave activity over Africa: Convective transitions and mechanisms. Mon. Wea. Rev., 146, 19451961, https://doi.org/10.1175/MWR-D-17-0217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 2010: The multiscale organization of moist convection and the intersection of weather and climate. Climate Dynamics: Why Does Climate Vary?, Geophys. Monogr., Vol. 189, Amer. Geophys. Union, 3–26, https://doi.org/10.1029/2008GM000838.

    • Crossref
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, https://doi.org/10.1175/1520-0442-16.10.1456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and W. B. Rossow, 2011: The cloud radiative effects of International Satellite Cloud Climatology Project weather states. J. Geophys. Res., 116, D12202, https://doi.org/10.1029/2010JD015472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., N. Cho, D. Lee, S. Kato, and G. J. Huffman, 2014: An examination of the nature of global MODIS cloud regimes. J. Geophys. Res. Atmos., 119, 83628383, https://doi.org/10.1002/2013JD021409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., N. Cho, D. Lee, and S. Kato, 2016: Radiative effects of global MODIS cloud regimes. J. Geophys. Res. Atmos., 121, 22992317, https://doi.org/10.1002/2015JD024502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., N. Cho, and D. Lee, 2017a: New insights about cloud vertical structure from CloudSat and CALIPSO observations: A new look at cloud vertical structure. J. Geophys. Res. Atmos., 122, 92809300, https://doi.org/10.1002/2017JD026629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., N. Cho, and D. Lee, 2017b: Using MODIS cloud regimes to sort diagnostic signals of aerosol–cloud–precipitation interactions. J. Geophys. Res. Atmos., 122, 54165440, https://doi.org/10.1002/2016JD026120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., G. Tselioudis, A. Polak, and C. Jakob, 2005: Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures. Geophys. Res. Lett., 32, L21812, https://doi.org/10.1029/2005GL024584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., A. Mekonnen, C. Pearl, and W. Goncalves, 2013: Tropical precipitation extremes. J. Climate, 26, 14571466, https://doi.org/10.1175/JCLI-D-11-00725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., Y. Zhang, and G. Tselioudis, 2016: Atmospheric diabatic heating in different weather states and the general circulation. J. Climate, 29, 10591065, https://doi.org/10.1175/JCLI-D-15-0760.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., S.-W. Yeh, J. Schmetz, and H.-J. Song, 2013: Observational evidences of Walker circulation change over the last 30 years contrasting with GCM results. Climate Dyn., 40, 17211732, https://doi.org/10.1007/s00382-012-1484-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stachnik, J. P., C. Schumacher, and P. E. Ciesielski, 2013: Total heating characteristics of the ISCCP tropical and subtropical cloud regimes. J. Climate, 26, 70977116, https://doi.org/10.1175/JCLI-D-12-00673.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., and C. Jakob, 2013: A three-hourly data set of the state of tropical convection based on cloud regimes. Geophys. Res. Lett., 40, 14151419, https://doi.org/10.1002/grl.50294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., C. Jakob, and T. P. Lane, 2013: On the identification of the large-scale properties of tropical convection using cloud regimes. J. Climate, 26, 66186632, https://doi.org/10.1175/JCLI-D-12-00624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., C. Jakob, W. B. Rossow, and G. Tselioudis, 2015: Increases in tropical rainfall driven by changes in frequency of organized deep convection. Nature, 519, 451454, https://doi.org/10.1038/nature14339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., W. A. Petersen, and A. Tokay, 2016: A novel approach to identify sources of errors in IMERG for GPM ground validation. J. Hydrometeor., 17, 24772491, https://doi.org/10.1175/JHM-D-16-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., L. Oreopoulos, C. Jakob, and D. Jin, 2018a: Evaluating rainfall errors in global climate models through cloud regimes. Climate Dyn., 50, 33013314, https://doi.org/10.1007/s00382-017-3806-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., W. A. Petersen, G. Kirchengast, D. C. Goodrich, and D. B. Wolff, 2018b: Evaluation of Global Precipitation Measurement rainfall estimates against three dense gauge networks. J. Hydrometeor., 19, 517532, https://doi.org/10.1175/JHM-D-17-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tromeur, E., and W. B. Rossow, 2010: Interaction of tropical deep convection with the large-scale circulation in the MJO. J. Climate, 23, 18371853, https://doi.org/10.1175/2009JCLI3240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., and W. B. Rossow, 2011: Time scales of variability of the tropical atmosphere derived from cloud-defined weather states. J. Climate, 24, 602608, https://doi.org/10.1175/2010JCLI3574.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., E. Tromeur, W. B. Rossow, and C. S. Zerefos, 2010: Decadal changes in tropical convection suggest effects on stratospheric water vapor. Geophys. Res. Lett., 37, L14806, https://doi.org/10.1029/2010GL044092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., W. Rossow, Y. Zhang, and D. Konsta, 2013: Global weather states and their properties from passive and active satellite cloud retrievals. J. Climate, 26, 77347746, https://doi.org/10.1175/JCLI-D-13-00024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsushima, Y., M. A. Ringer, M. J. Webb, and K. D. Williams, 2013: Quantitative evaluation of the seasonal variations in climate model cloud regimes. Climate Dyn., 41, 26792696, https://doi.org/10.1007/s00382-012-1609-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsushima, Y., and Coauthors, 2016: Robustness, uncertainties, and emergent constraints in the radiative responses of stratocumulus cloud regimes to future warming. Climate Dyn., 46, 30253039, https://doi.org/10.1007/s00382-015-2750-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, Y., A. Behrangi, B. Lambrigtsen, and P.-E. Kirstetter, 2016: Evaluation and uncertainty estimation of the latest radar and satellite snowfall products using SNOTEL measurements over mountainous regions in western United States. Remote Sens., 8, 904, https://doi.org/10.3390/rs8110904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and G. Tselioudis, 2007: GCM intercomparison of global cloud regimes: Present-day evaluation and climate change response. Climate Dyn., 29, 231250, https://doi.org/10.1007/s00382-007-0232-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and M. J. Webb, 2009: A quantitative performance assessment of cloud regimes in climate models. Climate Dyn., 33, 141157, https://doi.org/10.1007/s00382-008-0443-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, K. D., C. A. Senior, A. Slingo, and J. F. B. Mitchell, 2005: Towards evaluating cloud response to climate change using clustering technique identification of cloud regimes. Climate Dyn., 24, 701719, https://doi.org/10.1007/s00382-004-0512-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 355 122 19
PDF Downloads 296 75 10