Interannual Variability of Summer Surface Air Temperature over Central India: Implications for Monsoon Onset

Zhen-Qiang Zhou Department of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China

Search for other papers by Zhen-Qiang Zhou in
Current site
Google Scholar
PubMed
Close
,
Renhe Zhang Department of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China

Search for other papers by Renhe Zhang in
Current site
Google Scholar
PubMed
Close
, and
Shang-Ping Xie Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, and Physical Oceanography Laboratory/CIMST, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Shang-Ping Xie in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Year-to-year variability of surface air temperature (SAT) over central India is most pronounced in June. Climatologically over central India, SAT peaks in May, and the transition from the hot premonsoon to the cooler monsoon period takes place around 9 June, associated with the northeastward propagation of intraseasonal convective anomalies from the western equatorial Indian Ocean. Positive (negative) SAT anomalies during June correspond to a delayed (early) Indian summer monsoon onset and tend to occur during post–El Niño summers. On the interannual time scale, positive SAT anomalies of June over central India are associated with positive SST anomalies over both the equatorial eastern–central Pacific and Indian Oceans, representing El Niño effects in developing and decay years, respectively. Although El Niño peaks in winter, the correlations between winter El Niño and Indian SAT peak in the subsequent June, representing a post–El Niño summer capacitor effect associated with positive SST anomalies over the north Indian Ocean. These results have important implications for the prediction of Indian summer climate including both SAT and summer monsoon onset over central India.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Renhe Zhang, rhzhang@fudan.edu.cn

Abstract

Year-to-year variability of surface air temperature (SAT) over central India is most pronounced in June. Climatologically over central India, SAT peaks in May, and the transition from the hot premonsoon to the cooler monsoon period takes place around 9 June, associated with the northeastward propagation of intraseasonal convective anomalies from the western equatorial Indian Ocean. Positive (negative) SAT anomalies during June correspond to a delayed (early) Indian summer monsoon onset and tend to occur during post–El Niño summers. On the interannual time scale, positive SAT anomalies of June over central India are associated with positive SST anomalies over both the equatorial eastern–central Pacific and Indian Oceans, representing El Niño effects in developing and decay years, respectively. Although El Niño peaks in winter, the correlations between winter El Niño and Indian SAT peak in the subsequent June, representing a post–El Niño summer capacitor effect associated with positive SST anomalies over the north Indian Ocean. These results have important implications for the prediction of Indian summer climate including both SAT and summer monsoon onset over central India.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Renhe Zhang, rhzhang@fudan.edu.cn
Save
  • Ananthakrishnan, R., and M. K. Soman, 1988: The onset of the southwest monsoon over Kerala: 1901–1980. J. Climatol., 8, 283296, https://doi.org/10.1002/joc.3370080305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ananthakrishnan, R., U. R. Acharya, and A. R. Ramakrishnan, 1967: On the criteria for declaring the onset of southwest monsoon over Kerala. India Meteorological Department Forecasting Manual IV, 18-1, IMD, 52 pp.

  • Biasutti, M., and Coauthors, 2018: Global energetics and local physics as drivers of past, present and future monsoons. Nat. Geosci., 11, 392400, https://doi.org/10.1038/s41561-018-0137-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryson, R. A., and W. H. Campbell, 1982: Year-in-advance forecasting of the Indian monsoon rainfall. Environ. Conserv., 9, 5156, https://doi.org/10.1017/S0376892900019536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J., N. John, and C. Gnanaseelan, 2014: Interannual variability of surface air-temperature over India: Impact of ENSO and Indian Ocean Sea surface temperature. Int. J. Climatol., 34, 416429, https://doi.org/10.1002/joc.3695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J., H. S. Harsha, C. Gnanaseelan, G. Srinivas, A. Parekh, P. Pillai, and C. V. Naidu, 2017: Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño. Climate Dyn., 48, 27072727, https://doi.org/10.1007/s00382-016-3233-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J., G. Srinivas, Y. Du, K. Gopinath, C. Gnanaseelan, A. Parekh, and P. Singh, 2018: Month-to-month variability of Indian summer monsoon rainfall in 2016: Role of the Indo-Pacific climatic conditions. Climate Dyn., https://doi.org/10.1007/s00382-018-4185-4.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2018: Challenges and opportunities for improved understanding of regional climate dynamics. Nat. Climate Change, 8, 101108, https://doi.org/10.1038/s41558-017-0059-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De, U. S., R. K. Dube, and G. P. Rao, 2005: Extreme weather events over India in the last 100 years. J. Ind. Geophys. Union, 9, 173187.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J., and P. Webster, 2003: A hydrological definition of Indian monsoon onset and withdrawal. J. Climate, 16, 32003211, https://doi.org/10.1175/1520-0442(2003)016<3200a:AHDOIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gadgil, S., 2003: The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci., 31, 429467, https://doi.org/10.1146/annurev.earth.31.100901.141251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gadgil, S., and S. Gadgil, 2006: The Indian monsoon, GDP and agriculture. Econ. Polit. Wkly., 41, 48874895.

  • Goswami, B., G. Wu, and T. Yasunari, 2006: The annual cycle, intraseasonal oscillations, and roadblock to seasonal predictability of the Asian summer monsoon. J. Climate, 19, 50785099, https://doi.org/10.1175/JCLI3901.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, H., N. C. Johnson, and S.-P. Xie, 2013: Subseasonal and interannual temperature variability in relation to extreme temperature occurrence over East Asia. J. Climate, 26, 90269042, https://doi.org/10.1175/JCLI-D-12-00676.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joseph, P., J. K. Eischeid, and R. J. Pyle, 1994: Interannual variability of the onset of the Indian summer monsoon and its association with atmospheric features, El Niño, and sea surface temperature anomalies. J. Climate, 7, 81105, https://doi.org/10.1175/1520-0442(1994)007<0081:IVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joseph, P., K. Sooraj, and C. Rajan, 2006: The summer monsoon onset process over South Asia and an objective method for the date of monsoon onset over Kerala. Int. J. Climatol., 26, 18711893, https://doi.org/10.1002/joc.1340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knowlton, K., and Coauthors, 2014: Development and implementation of South Asia’s first heat-health action plan in Ahmedabad (Gujarat, India). Int. J. Environ. Res. Public Health, 11, 34733492, https://doi.org/10.3390/ijerph110403473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., S.-P. Xie, N.-C. Lau, and G. A. Vecchi, 2013: Origin of seasonal predictability for summer climate over the Northwestern Pacific. Proc. Natl. Acad. Sci. USA, 110, 75747579, https://doi.org/10.1073/pnas.1215582110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., B. Rajagopalan, and M. A. Cane, 1999: On the weakening relationship between the Indian monsoon and ENSO. Science, 284, 21562159, https://doi.org/10.1126/science.284.5423.2156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H.-T., 2014: Climate algorithm theoretical basis document (C-ATBD): Outgoing longwave radiation (OLR)—Daily. NOAA’s Climate Data Record (CDR) Program, CDR-ATBD-0526, 46 pp., http://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/Outgoing%20Longwave%20Radiation%20-%20Daily/AlgorithmDescription.pdf.

  • Li, C., and M. Yanai, 1996: The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast. J. Climate, 9, 358375, https://doi.org/10.1175/1520-0442(1996)009<0358:TOAIVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, E., X. Zeng, Z. Jiang, Y. Wang, and Q. Zhang, 2009: Precipitation and precipitable water: Their temporal-spatial behaviors and use in determining monsoon onset/retreat and monsoon regions. J. Geophys. Res., 114, D23105, https://doi.org/10.1029/2009JD012146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazdiyasni, O., and Coauthors, 2017: Increasing probability of mortality during Indian heat waves. Sci. Adv., 3, e1700066, https://doi.org/10.1126/sciadv.1700066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, V., B. V. Smoliak, D. P. Lettenmaier, and J. M. Wallace, 2012: A prominent pattern of year-to-year variability in Indian summer monsoon rainfall. Proc. Natl. Acad. Sci. USA, 109, 72137217, https://doi.org/10.1073/pnas.1119150109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Misra, V., A. Bhardwaj, and A. Mishra, 2018: Local onset and demise of the Indian summer monsoon. Climate Dyn., 51, 16091622, https://doi.org/10.1007/s00382-017-3924-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, T., L.-X. Chen, and A. Xie, 1986: Relationship among seasonal cycles, low-frequency oscillations, and transient disturbances as revealed from outgoing longwave radiation data. Mon. Wea. Rev., 114, 14561465, https://doi.org/10.1175/1520-0493(1986)114<1456:RASCLF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noska, R., and V. Misra, 2016: Characterizing the onset and demise of the Indian summer monsoon. Geophys. Res. Lett., 43, 45474554, https://doi.org/10.1002/2016GL068409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pai, D., and M. Rajeevan, 2007: Indian summer monsoon onset: Variability and prediction. National Climate Centre Research Rep. 4/2007, 27 pp.

  • Parthasarathy, B., K. Rupa Kumar, and A. Munot, 1992: Forecast of rainy season foodgrain production based on monsoon rainfall. Indian J. Agric. Sci., 62, 18.

    • Search Google Scholar
    • Export Citation
  • Parthasarathy, B., A. Munot, and D. Kothawale, 1994: All-India monthly and seasonal rainfall series: 1871–1993. Theor. Appl. Climatol. Climatol., 49, 217224, https://doi.org/10.1007/BF00867461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qi, Y., R. Zhang, T. Li, and M. Wen, 2008: Interactions between the summer mean monsoon and the intraseasonal oscillation in the Indian monsoon region. Geophys. Res. Lett., 35, L17704, https://doi.org/10.1029/2008GL034517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, Y., 1976: Southwest Monsoon. Meteorological Monograph–Synoptic Meteorology No. 1/1976, India Meteorological Department, 367 pp.

  • Rasmusson, E. M., and T. H. Carpenter, 1983: The relationship between eastern equatorial Pacific sea surface temperatures and rainfall over India and Sri Lanka. Mon. Wea. Rev., 111, 517528, https://doi.org/10.1175/1520-0493(1983)111<0517:TRBEEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., and H. Annamalai, 2014: The use of fractional accumulated precipitation for the evaluation of the annual cycle of monsoons. Climate Dyn., 43, 32193244, https://doi.org/10.1007/s00382-014-2099-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srinivas, G., J. S. Chowdary, Y. Kosaka, C. Gnanaseelan, A. Parekh, and K. V. Prasad, 2018: Influence of the Pacific–Japan pattern on Indian summer monsoon rainfall. J. Climate, 31, 39433958, https://doi.org/10.1175/JCLI-D-17-0408.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taniguchi, K., and T. Koike, 2006: Comparison of definitions of Indian summer monsoon onset: Better representation of rapid transitions of atmospheric conditions. Geophys. Res. Lett., 33, L02709, https://doi.org/10.1029/2005GL024526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thirumalai, K., P. N. DiNezio, Y. Okumura, and C. Deser, 2017: Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. Nat. Commun., 8, 15531, https://doi.org/10.1038/ncomms15531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wahl, E. R., and C. Morrill, 2010: Toward understanding and predicting monsoon patterns. Science, 328, 437438, https://doi.org/10.1126/science.1188926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Ding, and P. Joseph, 2009: Objective definition of the Indian summer monsoon onset. J. Climate, 22, 33033316, https://doi.org/10.1175/2008JCLI2675.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and S. W. Yeh, 2010: A further study of the tropical Indian Ocean asymmetric mode in boreal spring. J. Geophys. Res., 115, D08101, https://doi.org/10.1029/2009JD012999.

    • Search Google Scholar
    • Export Citation
  • Xavier, P. K., C. Marzin, and B. Goswami, 2007: An objective definition of the Indian summer monsoon season and a new perspective on the ENSO–monsoon relationship. Quart. J. Roy. Meteor. Soc., 133, 749764, https://doi.org/10.1002/qj.45.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and Z.-Q. Zhou, 2017: Seasonal modulations of El Niño–related atmospheric variability: Indo–western Pacific Ocean feedback. J. Climate, 30, 34613472, https://doi.org/10.1175/JCLI-D-16-0713.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and Coauthors, 2015: Towards predictive understanding of regional climate change. Nat. Climate Change, 5, 921930, https://doi.org/10.1038/nclimate2689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., and E. Lu, 2004: Globally unified monsoon onset and retreat indexes. J. Climate, 17, 22412248, https://doi.org/10.1175/15200442(2004)017<2241:GUMOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., L. Wu, and W. Dong, 2011: Land–atmosphere coupling and summer climate variability over East Asia. J. Geophys. Res., 116, D05117, https://doi.org/10.1029/2010JD014714.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2001: Relations of water vapor transport from Indian monsoon with that over East Asia and the summer rainfall in China. Adv. Atmos. Sci., 18, 10051017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon. J. Meteor. Soc. Japan, 74, 4962, https://doi.org/10.2151/jmsj1965.74.1_49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Z.-Q., S.-P. Xie, G. J. Zhang, and W. Zhou, 2018: Evaluating AMIP skill in simulating interannual variability over the Indo–western Pacific. J. Climate, 31, 22532265, https://doi.org/10.1175/JCLI-D-17-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3030 1222 164
PDF Downloads 1318 254 31