• Christensen, N. S., A. W. Wood, N. Voisin, D. P. Lettenmaier, and R. N. Palmer, 2004: The effects of climate change on the hydrology and water resources of the Colorado River basin. Climatic Change, 62, 337363, https://doi.org/10.1023/B:CLIM.0000013684.13621.1f.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coles, S., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer, 208 pp.

    • Crossref
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Cooley, D., 2009: Extreme value analysis and the study of climate change. Climatic Change, 97, 7783, https://doi.org/10.1007/s10584-009-9627-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., 2009: Time-dependent changes in extreme-precipitation return-period amounts in the continental United States. J. Appl. Meteor. Climatol., 48, 20862099, https://doi.org/10.1175/2009JAMC2179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deschenes, O., and M. Greenstone, 2007: The economic impacts of climate change: Evidence from agricultural output and random fluctuations in weather. Amer. Econ. Rev., 97, 354385, https://doi.org/10.1257/aer.97.1.354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Vries, H., R. J. Haarsma, and W. Hazeleger, 2012: Western European cold spells in current and future climate. Geophys. Res. Lett., 39, L04706, https://doi.org/10.1029/2011GL050665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., and M. Ashfaq, 2010: Intensification of hot extremes in the United States. Geophys. Res. Lett., 37, L15702, https://doi.org/10.1029/2010GL043888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., and Coauthors, 2016: Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl. Acad. Sci. USA, 114, 48814886, https://doi.org/10.1073/pnas.1618082114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duffy, P. B., and C. Tebaldi, 2012: Increasing prevalence of extreme summer temperatures in the U.S. Climatic Change, 111, 487495, https://doi.org/10.1007/s10584-012-0396-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dulière, V., Y. Zhang, and E. P. Salathé Jr., 2012: Changes in twentieth-century extreme temperature and precipitation over the western United States based on observations and regional climate model simulations. J. Climate, 26, 85568575, https://doi.org/10.1175/JCLI-D-12-00818.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., 2008: Observed changes in the global distribution of daily temperature and precipitation extremes. Climate Extremes and Society, H. F. Diaz and R. J. Murnane, Eds., Cambridge University Press, 24–34.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., J. L. Evans, P. Ya. Groisman, T. R. Karl, K. E. Kunkel, and P. Ambenje, 2000: Observed variability and trends in extreme climatic events: A brief review. Bull. Amer. Meteor. Soc., 81, 417426, https://doi.org/10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Felici, M., V. Lucarini, A. Speranza, and R. Vitolo, 2007a: Extreme value statistics of the total energy in an intermediate-complexity model of the midlatitude atmospheric jet. Part I: Stationary case. J. Atmos. Sci., 64, 21372158, https://doi.org/10.1175/JAS3895.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Felici, M., V. Lucarini, A. Speranza, and R. Vitolo, 2007b: Extreme value statistics of the total energy in an intermediate-complexity model of the midlatitude atmospheric jet. Part II: Trend detection and assessment. J. Atmos. Sci., 64, 21592175, https://doi.org/10.1175/JAS4043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, C. B., and Coauthors, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, 582 pp.

  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Handmer, J., and Coauthors, 2012: Changes in impacts of climate extremes: Human systems and ecosystems. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, Cambridge University Press, 231–290.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and Coauthors, 2013: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 159–254.

  • Hasan, H., N. Salam, and S. Kassim, 2013: Modeling annual extreme temperature using generalized extreme value distribution: A case study in Malaysia. AIP Conf. Proc., 1522, 11951202, https://doi.org/10.1063/1.4801267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayhoe, K., and Coauthors, 2007: Past and future changes in climate and hydrological indicators in the US Northeast. Climate Dyn., 28, 381407, https://doi.org/10.1007/s00382-006-0187-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, E., and R. Sriver, 2017: Analyzing the effect of ocean internal variability on depth-integrated steric sea-level rise trends using a low-resolution CESM ensemble. Water, 9, 483, https://doi.org/10.3390/w9070483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, D. E., N. C. Johnson, D. Singh, D. L. Swain, B. Rajaratnam, and N. S. Diffenbaugh, 2015: Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature, 522, 465469, https://doi.org/10.1038/nature14550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W. K., M. L. Stein, D. J. McInerney, S. Sun, and E. J. Moyer, 2016: Estimating changes in temperature extremes from millennial-scale climate simulations using generalized extreme value (GEV) distributions. Adv. Stat. Climatol. Meteor. Oceanogr, 2, 79103, https://doi.org/10.5194/ascmo-2-79-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, E., R. L. Sriver, D. J. Wuebbles, and K. E. Kunkel, 2016: Seasonal and regional variations in extreme precipitation event frequency using CMIP5. Geophys. Res. Lett., 43, 53855393, https://doi.org/10.1002/2016GL069151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and D. R. Easterling, 1999: Climate extremes: Selected review and future research directions. Climatic Change, 42, 309325, https://doi.org/10.1023/A:1005436904097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., J. M. Melillo, and T. C. Peterson, Eds., 2009: Global Climate Change Impacts in the United States. Cambridge University Press, 188 pp., downloads.globalchange.gov/usimpacts/pdfs/climate-impacts-reports.pdf.

  • Katz, R. W., 1999: Extreme value theory for precipitation: Sensitivity analysis for climate change. Adv. Water Resour., 23, 133139, https://doi.org/10.1016/S0309-1708(99)00017-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, X. Zhang, and M. Wehner, 2013: Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345357, https://doi.org/10.1007/s10584-013-0705-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koutsoyiannis, D., 2004: Statistics of extremes and estimation of extreme rainfall: I. Theoretical investigation. Hydrol. Sci. J., 49, 575590, https://doi.org/10.1623/hysj.49.4.575.54430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., R. A. Pielke, and S. A. Changnon, 1999: Temporal Fluctuations in weather and climate extremes that cause economic and human health impacts: A review. Bull. Amer. Meteor. Soc., 80, 10771098, https://doi.org/10.1175/1520-0477(1999)080<1077:TFIWAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., and Coauthors, 2008: Observed changes in weather and climate extremes. Weather and Climate Extremes in a Changing Climate—Regions of Focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands, T. R. Karl et al., Eds., U.S. Climate Change Science Program, 35–80.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., A. W. Wood, J. C. Adam, D. P. Lettenmaier, and B. Nijssen, 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, https://doi.org/10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melillo, J. M., T. Richmond, and G. W. Yohe, Eds., 2014: Climate Change Impacts in the United States: The Third National Climate Assessment. U.S. Global Change Research Program, 841 pp., https://doi.org/10.7930/J0Z31WJ2.

    • Crossref
    • Export Citation
  • Min, E., W. Hazeleger, G. J. van Oldenborgh, and A. Sterl, 2013: Evaluation of trends in high temperature extremes in north-western Europe in regional climate models. Environ. Res. Lett., 8, 014011, https://doi.org/10.1088/1748-9326/8/1/014011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, https://doi.org/10.1038/nature08823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parey, S., T. T. H. Hoang, and D. Dacunha-Castelle, 2013: The importance of mean and variance in predicting changes in temperature extremes. J. Geophys. Res. Atmos., 118, 82858296, https://doi.org/10.1002/jgrd.50629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., and Coauthors, 2008: Why weather and climate extremes matter. Weather and Climate Extremes in a Changing Climate—Regions of Focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands, T. R. Karl et al., Eds., U.S. Climate Change Science Program, 11–34.

    • Search Google Scholar
    • Export Citation
  • Schauberger, B., and Coauthors, 2017: Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun., 8, 13931, https://doi.org/10.1038/ncomms13931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlenker, W., and M. K. Roberts, 2009: Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA, 106, 15 59415 598, https://doi.org/10.1073/pnas.0906865106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shields, C. A., D. A. Bailey, G. Danabasoglu, J. T. Kiehl, S. Levis, M. Jochum, and S. Park, 2012: The low-resolution CCSM4. J. Climate, 25, 39934014, https://doi.org/10.1175/JCLI-D-11-00260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, 2013a: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos., 118, 17161733, https://doi.org/10.1002/jgrd.50203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, 2013b: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos., 118, 24732493, https://doi.org/10.1002/jgrd.50188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, D., M. Tsiang, B. Rajaratnam, and N. S. Diffenbaugh, 2014: Observed changes in extreme wet and dry spells during the South Asian summer monsoon season. Nat. Climate Change, 4, 456461, https://doi.org/10.1038/nclimate2208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sriver, R. L., C. E. Forest, and K. Keller, 2015: Effects of initial conditions uncertainty on regional climate variability: An analysis using a low-resolution CESM ensemble. Geophys. Res. Lett., 42, 54685476, https://doi.org/10.1002/2015GL064546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, M. L., 2017: Should annual maximum temperatures follow a generalized extreme value distribution? Biometrika, 104, 116, https://doi.org/10.1093/biomet/asw070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swain, D. L., and Coauthors, 2014: The extraordinary California drought of 2013/14: Character, context, and the role of climate change [in “Explaining Extreme Events of 2013 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 95 (9), S3S7, https://doi.org/10.1175/1520-0477-95.9.S1.1.

    • Search Google Scholar
    • Export Citation
  • Swain, D. L., D. E. Horton, D. Singh, and N. S. Diffenbaugh, 2016: Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California. Sci. Adv., 2, e1501344, https://doi.org/10.1126/sciadv.1501344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Res., 47, 123138, https://doi.org/10.3354/cr00953.

  • Vega-Westhoff, B., and R. Sriver, 2017: Analysis of ENSO’s response to unforced variability and anthropogenic forcing using CESM. Sci. Rep., 7, 18047, https://doi.org/10.1038/s41598-017-18459-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. D., and Coauthors, 2014: Our changing climate. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, T. C. Richmond, and G. W. Yode, Eds., U.S. Global Change Research Program, 19–67, https://doi.org/10.7930/J0Z31WJ2.

    • Crossref
    • Export Citation
  • Wang, J. X. L., and J. K. Angell, 1999. Air Stagnation Climatology for the United States (1948–1998). NOAA/Air Resources Laboratory ATLAS 1, 73 pp.

  • Welch, J. R., J. R. Vincent, M. Auffhammer, P. F. Moya, A. Dobermann, and D. Dawe, 2010: Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proc. Natl. Acad. Sci. USA, 107, 14 56214 567, https://doi.org/10.1073/pnas.1001222107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilbanks, T., and Coauthors, 2008: Effects of Climate Change on Energy Production and Use in the United States. U.S. Climate Change Science Program, 84 pp.

  • Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216, https://doi.org/10.1023/B:CLIM.0000013685.99609.9e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wuebbles, D., and Coauthors, 2014: CMIP5 climate model analyses: Climate extremes in the United States. Bull. Amer. Meteor. Soc., 95, 571–583, https://doi.org/10.1175/BAMS-D-12-00172.1.

    • Crossref
    • Export Citation
  • Wuebbles, D., and Coauthors, 2017: Executive summary. Climate Science Special Report: Fourth National Climate Assessment, Vol. 1, D. J. Wuebbles et al., Eds., U.S. Global Change Research Program, 12–34, https://doi.org/10.7930/J0DJ5CTG.

    • Search Google Scholar
    • Export Citation
  • Wuertz, D., T. Setz, and Y. Chalabi, 2017: Rmetrics—Modelling extreme events in finance. Package “fExtremes,” Comprehensive R Archive Network Rep., 41 pp., https://cran.r-project.org/web/packages/fExtremes/fExtremes.pdf.

  • Yao, Y., Y. Luo, J. Huang, and Z. Zhao, 2013: Comparison of monthly temperature extremes simulated by CMIP3 and CMIP5 models. J. Climate, 26, 7692–7707, https://doi.org/10.1175/JCLI-D-12-00560.1.

    • Crossref
    • Export Citation
  • Zahid, M., R. Blender, V. Lucarini, and M. C. Bramati, 2017: Return levels of temperature extremes in southern Pakistan. Earth Syst. Dyn., 8, 12631278, https://doi.org/10.5194/esd-8-1263-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 304 171 1
PDF Downloads 276 175 2

Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles

View More View Less
  • 1 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
  • | 2 Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, Pennsylvania
  • | 3 Earth and Environmental Systems Institute, and Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania
  • | 4 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
Restricted access

Abstract

Extreme temperature events can have considerable negative impacts on sectors such as health, agriculture, and transportation. Observational evidence indicates the severity and frequency of warm extremes are increasing over much of the United States, but there are sizeable challenges both in estimating extreme temperature changes and in quantifying the relevant associated uncertainties. This study provides a simple statistical framework using a block maxima approach to analyze the representation of warm temperature extremes in several recent global climate model ensembles. Uncertainties due to structural model differences, grid resolution, and internal variability are characterized and discussed. Results show that models and ensembles differ greatly in the representation of extreme temperature over the United States, and variability in tail events is dependent on time and anthropogenic warming, which can influence estimates of return periods and distribution parameter estimates using generalized extreme value (GEV) distributions. These effects can considerably influence the uncertainty of model hindcasts and projections of extremes. Several idealized regional applications are highlighted for evaluating ensemble skill and trends, based on quantile analysis and root-mean-square errors in the overall sample and the upper tail. The results are relevant to regional climate assessments that use global model outputs and that are sensitive to extreme warm temperature. Accompanying this manuscript is a simple toolkit using the R statistical programming language for characterizing extreme events in gridded datasets.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0075.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Emily Hogan, eehogan2@illinois.edu

Abstract

Extreme temperature events can have considerable negative impacts on sectors such as health, agriculture, and transportation. Observational evidence indicates the severity and frequency of warm extremes are increasing over much of the United States, but there are sizeable challenges both in estimating extreme temperature changes and in quantifying the relevant associated uncertainties. This study provides a simple statistical framework using a block maxima approach to analyze the representation of warm temperature extremes in several recent global climate model ensembles. Uncertainties due to structural model differences, grid resolution, and internal variability are characterized and discussed. Results show that models and ensembles differ greatly in the representation of extreme temperature over the United States, and variability in tail events is dependent on time and anthropogenic warming, which can influence estimates of return periods and distribution parameter estimates using generalized extreme value (GEV) distributions. These effects can considerably influence the uncertainty of model hindcasts and projections of extremes. Several idealized regional applications are highlighted for evaluating ensemble skill and trends, based on quantile analysis and root-mean-square errors in the overall sample and the upper tail. The results are relevant to regional climate assessments that use global model outputs and that are sensitive to extreme warm temperature. Accompanying this manuscript is a simple toolkit using the R statistical programming language for characterizing extreme events in gridded datasets.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0075.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Emily Hogan, eehogan2@illinois.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.87 MB)
Save