• Argo, 2018: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC). SEANOE, accessed 3 February 2017, http://doi.org/10.17882/42182.

    • Crossref
    • Export Citation
  • Balmaseda, M., D. Anderson, and A. Vidard, 2007: Impact of Argo on analyses of global ocean. Geophys. Res. Lett., 34, L16605, https://doi.org/10.1029/2007GL030452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barale, V., J. F. R. Gower, and L. Alberotanza, Eds., 2010: Oceanography from Space: Revisited. Springer, 374 pp.

  • Boening, C., J. K. Willis, F. W. Landerer, R. S. Nerem, and J. Fasullo, 2012: The 2011 La Niña: So strong, the oceans fell. Geophys. Res. Lett., 39, L19602, https://doi.org/10.1029/2012GL053055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freeman, E., and Coauthors, 2017: ICOADS Release 3.0: A major update to the historical marine climate record. Int. J. Climatol., 37, 22112232, https://doi.org/10.1002/joc.4775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujii, Y., and Coauthors, 2015: Evaluation of the tropical Pacific observing system from the ocean data assimilation perspective. Quart. J. Roy. Meteor. Soc., 141, 24812496, https://doi.org/10.1002/qj.2579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasparin, F., D. Roemmich, J. Gilson, and B. Cornuelle, 2015: Assessment of the upper-ocean observing system in the equatorial Pacific: The role of Argo in resolving intraseasonal to interannual variability. J. Atmos. Oceanic Technol., 32, 16681688, https://doi.org/10.1175/JTECH-D-14-00218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hausfather, Z., K. Cowtan, D. C. Clarke, P. Jacobs, M. Richardson, and R. Rohde, 2017: Assessing recent warming using instrumentally homogeneous sea surface temperature records. Sci. Adv., 3, e1601207, https://doi.org/10.1126/sciadv.1601207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirahara, S., M. Ishii, and Y. Fukuda, 2014: Centennial-scale sea surface temperature analysis and its uncertainty. J. Climate, 27, 5775, https://doi.org/10.1175/JCLI-D-12-00837.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., Y. Xue, and D. W. Behringer, 2008: Impacts of Argo salinity in NCEP Global Ocean Data Assimilation System: The tropical Indian Ocean. J. Geophys. Res., 113, C08002, https://doi.org/10.1029/2007JC004388.

    • Search Google Scholar
    • Export Citation
  • Huang, B., Y. Xue, H. Wang, W. Wang, and A. Kumar, 2012: Mixed layer heat budget of the El Niño in NCEP Climate Forecast System. Climate Dyn., 39, 365381, https://doi.org/10.1007/s00382-011-1111-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., M. L’Heureux, J. Lawrimore, C. Liu, H.-M. Zhang, V. Banzon, Z.-Z. Hu, and A. Kumar, 2013: Why did large differences arise in the sea-surface temperature datasets across the tropical Pacific during 2012? J. Atmos. Oceanic Technol., 30, 29442953, https://doi.org/10.1175/JTECH-D-13-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015a: Extended reconstructed sea surface temperature version 4 (ERSST.v4), Part I. Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., W. Wang, C. Liu, V. F. Banzon, H.-M. Zhang, and J. Lawrimore, 2015b: Bias adjustment of AVHRR SST and its impacts on two SST analyses. J. Atmos. Oceanic Technol., 32, 372387, https://doi.org/10.1175/JTECH-D-14-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., M. L’Heureux, Z.-Z. Hu, and H.-M. Zhang, 2016: Ranking the strongest ENSO events while incorporating SST uncertainty. Geophys. Res. Lett., 43, 91659172, https://doi.org/10.1002/2016GL070888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended reconstructed sea surface temperature version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., W. Angel, T. Boyer, L. Cheng, G. Chepurin, C. Liu, and H.-M. Zhang, 2018: Evaluating SST analyses with independent ocean profile observations. J. Climate, 31, 50155030, https://doi.org/10.1175/JCLI-D-17-0824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int. J. Climatol., 25, 865879, https://doi.org/10.1002/joc.1169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, M., and A. Leetmaa, 1997: Impact of data assimilation on ocean initialization and El Niño prediction. Mon. Wea. Rev., 125, 742753, https://doi.org/10.1175/1520-0493(1997)125<0742:IODAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and Coauthors, 2015: Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348, 14691472, https://doi.org/10.1126/science.aaa5632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011a: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling errors. J. Geophys. Res., 116, D14103, https://doi.org/10.1029/2010JD015218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011b: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2: Biases and homogenization. J. Geophys. Res., 116, D14104, https://doi.org/10.1029/2010JD015220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and Coauthors, 2017: Observing and predicting the 2015/16 El Niño. Bull. Amer. Meteor. Soc., 98, 13631382, https://doi.org/10.1175/BAMS-D-16-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and M. Pazos, 2007: Measuring surface currents with Surface Velocity Program drifters: The instrument, its data, and some recent results. Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics, A. Griffa et al., Eds., Cambridge University Press, 39–67, https://doi.org/10.1017/CBO9780511535901.003.

    • Crossref
    • Export Citation
  • Matthews, J. B. R., 2013: Comparing historical and modern methods of sea surface temperature measurement. Part 1: Review of methods, field comparisons and dataset adjustments. Ocean Sci., 9, 683694, https://doi.org/10.5194/os-9-683-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 1998: The Tropical Ocean–Global Atmosphere Observing System: A decade of progress. J. Geophys. Res., 103, 14 16914 240, https://doi.org/10.1029/97JC02906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., and Coauthors, 2012: A 20 year independent record of sea surface temperature for climate from along-track scanning radiometers. J. Geophys. Res., 117, C12013, https://doi.org/10.1029/2012JC008400.

    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., and Coauthors, 2014: Sea surface temperature datasets for climate applications from Phase 1 of the European Space Agency Climate Change Initiative (SST CCI). Geosci. Data J., 1, 179191, https://doi.org/10.1002/gdj3.20.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, P. R., and A. Schiller, 2007: Impact of Argo, SST, and altimeter data on an eddy-resolving ocean reanalysis. Geophys. Res. Lett., 34, L19601, https://doi.org/10.1029/2007GL031549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 289 pp.

  • Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, 1992: LU decomposition and its applications. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed., Cambridge University Press, 34–42.

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, Kent E., and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929948, https://doi.org/10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Coauthors, 2001: The global array of profiling floats. Observing the Ocean in the 21st Century, C. J. Koblinsky and N. R. Smith, Eds., Australian Bureau of Meteorology, 248–258.

  • Smith, T., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, C-C., S. Cucullu, S. McArthur, C. Kohler, B. Burnett, and L. Bernard, 2009: Buoy vandalism experienced by NOAA National Data Buoy Center. OCEANS 2009, Biloxi, MS, MTS/IEEE, https://doi.org/10.23919/OCEANS.2009.5422389.

    • Crossref
    • Export Citation
  • Tollefson, J., 2014: El Niño tests forecasters. Nature, 508, 2021, https://doi.org/10.1038/508020a.

  • van den Dool, H. M., S. Saha, and A. Johansson, 2000: Empirical orthogonal teleconnections. J. Climate, 13, 14211435, https://doi.org/10.1175/1520-0442(2000)013<1421:EOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

    • Crossref
    • Export Citation
  • Woodruff, S. D., and Coauthors, 2011: ICOADS release 2.5: Extensions and enhancements to the surface marine meteorological archive. Int. J. Climatol., 31, 951967, https://doi.org/10.1002/joc.2103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., and Coauthors, 2017: Evaluation of tropical Pacific observing systems using NCEP and GFDL ocean data assimilation systems. Climate Dyn., 49, 843868, https://doi.org/10.1007/s00382-015-2743-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R.-H., F. Zheng, J. Zhu, and Z. Wang, 2013: A successful real-time forecast of the 2010–11 La Niña event. Sci. Rep., 3, 1108, https://doi.org/10.1038/srep01108.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 667 358 0
PDF Downloads 388 215 0

The Role of Buoy and Argo Observations in Two SST Analyses in the Global and Tropical Pacific Oceans

View More View Less
  • 1 NOAA National Centers for Environmental Information, Asheville, North Carolina
  • | 2 ERT, Inc., Laurel, Maryland
  • | 3 National Climate Center, China Meteorological Administration, Beijing, and Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
  • | 4 NOAA National Centers for Environmental Information, Asheville, North Carolina
  • | 5 National Meteorological Information Center, China Meteorological Administration, Beijing, China
Restricted access

Abstract

The relative roles of buoy and Argo observations in two sea surface temperature (SST) analyses are studied in the global ocean and tropical Pacific Ocean over 2000–16 using monthly Extended Reconstructed SST version 5 (ERSSTv5) and Daily Optimum Interpolation SST version 2 (DOISST). Experiments show an overall higher impact by buoys than Argo floats over the global oceans and an increasing impact by Argo floats. The impact by Argo floats is generally larger in the Southern Hemisphere than in the Northern Hemisphere. The impact on trends and anomalies of globally averaged SST by either one is small when the other is used. The warming trend over 2000–16 remains significant by including either buoys or Argo floats or both. In the tropical Pacific, the impact by buoys was large over 2000–05 when the number of Argo floats was low, and became smaller over 2010–16 when the number and area coverage of Argo floats increased. The magnitude of El Niño and La Niña events decreases when the observations from buoys, Argo floats, or both are excluded. The impact by the Tropical Atmosphere Ocean (TAO) and Triangle Trans-Ocean Buoy Network (TRITON) is small in normal years and during El Niño events. The impact by TAO/TRITON buoys on La Niña events is small when Argo floats are included in the analysis systems, and large when Argo floats are not included. The reason for the different impact on El Niño and La Niña events is that the drifting buoys are more dispersed from the equatorial Pacific region by stronger trade winds during La Niña events.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Boyin Huang, boyin.huang@noaa.gov

Abstract

The relative roles of buoy and Argo observations in two sea surface temperature (SST) analyses are studied in the global ocean and tropical Pacific Ocean over 2000–16 using monthly Extended Reconstructed SST version 5 (ERSSTv5) and Daily Optimum Interpolation SST version 2 (DOISST). Experiments show an overall higher impact by buoys than Argo floats over the global oceans and an increasing impact by Argo floats. The impact by Argo floats is generally larger in the Southern Hemisphere than in the Northern Hemisphere. The impact on trends and anomalies of globally averaged SST by either one is small when the other is used. The warming trend over 2000–16 remains significant by including either buoys or Argo floats or both. In the tropical Pacific, the impact by buoys was large over 2000–05 when the number of Argo floats was low, and became smaller over 2010–16 when the number and area coverage of Argo floats increased. The magnitude of El Niño and La Niña events decreases when the observations from buoys, Argo floats, or both are excluded. The impact by the Tropical Atmosphere Ocean (TAO) and Triangle Trans-Ocean Buoy Network (TRITON) is small in normal years and during El Niño events. The impact by TAO/TRITON buoys on La Niña events is small when Argo floats are included in the analysis systems, and large when Argo floats are not included. The reason for the different impact on El Niño and La Niña events is that the drifting buoys are more dispersed from the equatorial Pacific region by stronger trade winds during La Niña events.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Boyin Huang, boyin.huang@noaa.gov
Save