• Adams, J. B., M. E. Mann, and C. M. Ammann, 2003: Proxy evidence for an El Niño–like response to volcanic forcing. Nature, 426, 274278, https://doi.org/10.1038/nature02101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R. P., C. Liu, N. G. Loeb, M. D. Palmer, M. Roberts, D. Smith, and P.-L. Vidale, 2014: Changes in global net radiative imbalance 1985–2012. Geophys. Res. Lett., 41, 55885597, https://doi.org/10.1002/2014GL060962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ammann, C. M., G. A. Meehl, W. M. Washington, and C. S. Zender, 2003: A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate. Geophys. Res. Lett., 30, 1657, https://doi.org/10.1029/2003GL016875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, https://doi.org/10.1175/JCLI-3223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. E. Trenberth, and E. Källén, 2013: Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett., 40, 17541759, https://doi.org/10.1002/grl.50382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bopp, L., and Coauthors, 2013: Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences, 10, 62256245, https://doi.org/10.5194/bg-10-6225-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brovkin, V., S. J. Lorenz, J. Jungclaus, T. Raddatz, C. Timmreck, C. H. Reick, J. Segschneider, and K. Six, 2010: Sensitivity of a coupled climate–carbon cycle model to large volcanic eruptions during the last millennium. Tellus, 62B, 674681, https://doi.org/10.1111/j.1600-0889.2010.00471.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, B., and Coauthors, 2017: Two decades of Pacific anthropogenic carbon storage and ocean acidification along Global Ocean Ship-Based Hydrographic Investigations Program sections p16 and p02. Global Biogeochem. Cycles, 31, 306327, https://doi.org/10.1002/2016GB005485.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 21902196, https://doi.org/10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, https://doi.org/10.1175/JCLI-D-11-00091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., V. Ramaswamy, and G. L. Stenchikov, 2005: The impact of aerosols on simulated ocean temperature and heat content in the 20th century. Geophys. Res. Lett., 32, L24709, https://doi.org/10.1029/2005GL024457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, https://doi.org/10.1007/s00382-010-0977-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., J. A. Carton, G. A. Chepurin, G. Stenchikov, A. Robock, L. T. Sentman, and J. P. Krasting, 2014: Ocean response to volcanic eruptions in Coupled Model Intercomparison Project 5 simulations. J. Geophys. Res. Oceans, 119, 56225637, https://doi.org/10.1002/2013JC009780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., A. Gnanadesikan, J. L. Sarmiento, and R. D. Slater, 2010: Technical description of the prototype version (v0) of Tracers of Phytoplankton with Allometric Zooplankton (TOPAZ) ocean biogeochemical model as used in the Princeton IFMIP model. Biogeosciences, 7 (suppl.), 3595, https://www.biogeosciences.net/7/3593/2010/bg-7-3593-2010-supplement.pdf.

  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, https://doi.org/10.1175/JCLI-D-11-00560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2013: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part II: Carbon system formulation and baseline simulation characteristics. J. Climate, 26, 22472267, https://doi.org/10.1175/JCLI-D-12-00150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutton, E. G., and J. R. Christy, 1992: Solar radiative forcing at selected locations and evidence for global lower tropospheric cooling following the eruptions of El Chichón and Pinatubo. Geophys. Res. Lett., 19, 23132316, https://doi.org/10.1029/92GL02495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eddebbar, Y. A., M. C. Long, L. Resplandy, C. Rödenbeck, K. B. Rodgers, M. Manizza, and R. F. Keeling, 2017: Impacts of ENSO on air–sea oxygen exchange: Observations and mechanisms. Global Biogeochem. Cycles, 31, 901921, https://doi.org/10.1002/2017GB005630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emile-Geay, J., R. Seager, M. A. Cane, E. R. Cook, and G. H. Haug, 2008: Volcanoes and ENSO over the past millennium. J. Climate, 21, 31343148, https://doi.org/10.1175/2007JCLI1884.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feely, R. A., and Coauthors, 2002: Seasonal and interannual variability of CO2 in the equatorial Pacific. Deep-Sea Res. II, 49, 24432469, https://doi.org/10.1016/S0967-0645(02)00044-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feely, R. A., T. Takahashi, R. Wanninkhof, M. McPhaden, C. Cosca, S. Sutherland, and M.-E. Carr, 2006: Decadal variability of the air–sea CO2 fluxes in the equatorial Pacific Ocean. J. Geophys. Res., 111, C08S90, https://doi.org/10.1029/2005JC003129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frölicher, T. L., F. Joos, G.-K. Plattner, M. Steinacher, and S. C. Doney, 2009: Natural variability and anthropogenic trends in oceanic oxygen in a coupled carbon cycle–climate model ensemble. Global Biogeochemical Cycles, 23, GB1003, https://doi.org/10.1029/2008GB003316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frölicher, T. L., F. Joos, and C. C. Raible, 2011: Sensitivity of atmospheric CO2 and climate to explosive volcanic eruptions. Biogeosciences, 8, 23172339, https://doi.org/10.5194/bg-8-2317-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frölicher, T. L., F. Joos, C. C. Raible, and J. L. Sarmiento, 2013: Atmospheric CO2 response to volcanic eruptions: The role of ENSO, season, and variability. Global Biogeochem. Cycles, 27, 239251, https://doi.org/10.1002/gbc.20028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, C., A. Robock, and C. Ammann, 2008: Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J. Geophys. Res., 113, D23111, https://doi.org/10.1029/2008JD010239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., K. M. AchutaRao, J. M. Gregory, B. D. Santer, K. E. Taylor, and T. M. L. Wigley, 2006: Krakatoa lives: The effect of volcanic eruptions on ocean heat content and thermal expansion. Geophys. Res. Lett., 33, L17702, https://doi.org/10.1029/2006GL026771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., M. Schmidt, and M. Herzfeld, 2009: Elements of MOM4p1. GFDL Ocean Group Tech. Rep. 6, 444 pp.

  • Huang, B., Y. Xue, D. Zhang, A. Kumar, and M. J. McPhaden, 2010: The NCEP GODAS ocean analysis of the tropical Pacific mixed layer heat budget on seasonal to interannual time scales. J. Climate, 23, 49014925, https://doi.org/10.1175/2010JCLI3373.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E., W. Lipscomb, A. Turner, N. Jeffery, and S. Elliott, 2008: CICE: The Los Alamos Sea Ice Model, documentation and software, version 4.0. Los Alamos National Laboratory Tech. Rep. LA-CC-06-012, 76 pp.

  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, T., S. Minobe, M. C. Long, and C. Deutsch, 2017: Upper ocean O2 trends: 1958–2015. Geophys. Res. Lett., 44, 42144223, https://doi.org/10.1002/2017GL073613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeling, R. F., and A. Manning, 2014: Studies of recent changes in atmospheric O2 content. Treatise on Geochemistry, Vol. 5, Elsevier, 385–404.

    • Crossref
    • Export Citation
  • Keeling, R. F., R. P. Najjar, M. L. Bender, and P. P. Tans, 1993: What atmospheric oxygen measurements can tell us about the global carbon cycle. Global Biogeochem. Cycles, 7, 3767, https://doi.org/10.1029/92GB02733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeling, R. F., A. Körtzinger, and N. Gruber, 2010: Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci., 2, 199–229, https://doi.org/10.1146/annurev.marine.010908.163855.

    • Crossref
    • Export Citation
  • Khodri, M., and Coauthors, 2017: Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nat. Commun., 8, 778, https://doi.org/10.1038/s41467-017-00755-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kouketsu, S., A. Murata, and T. Doi, 2013: Decadal changes in dissolved inorganic carbon in the Pacific Ocean. Global Biogeochem. Cycles, 27, 6576, https://doi.org/10.1029/2012GB004413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, H., 1983: Update of the chronology of assessments of the volcanic dust veil index. Climate Monitor, 12 (3), 7990.

  • Landschützer, P., and Coauthors, 2015: The reinvigoration of the Southern Ocean carbon sink. Science, 349, 12211224, https://doi.org/10.1126/science.aab2620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landschützer, P., N. Gruber, and D. C. Bakker, 2016: Decadal variations and trends of the global ocean carbon sink. Global Biogeochem. Cycles, 30, 13961417, https://doi.org/10.1002/2015GB005359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., A. P. Schurer, G. C. Hegerl, C. Deser, and T. L. Frölicher, 2016: The importance of ENSO phase during volcanic eruptions for detection and attribution. Geophys. Res. Lett., 43, 28512858, https://doi.org/10.1002/2016GL067935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and Coauthors, 2013: El Niño modulations over the past seven centuries. Nat. Climate Change, 3, 822826, https://doi.org/10.1038/nclimate1936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and Coauthors, 2015: Combining satellite observations and reanalysis energy transports to estimate global net surface energy fluxes 1985–2012. J. Geophys. Res., 120, 93749389, https://doi.org/10.1002/2015JD023264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., J. Li, B. Wang, J. Liu, T. Li, G. Huang, and Z. Wang, 2018: Divergent El Niño responses to volcanic eruptions at different latitudes over the past millennium. Climate Dyn., 50, 37993812, https://doi.org/10.1007/s00382-017-3846-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, M. C., K. Lindsay, S. Peacock, J. K. Moore, and S. C. Doney, 2013: Twentieth-century oceanic carbon uptake and storage in CESM1 (BGC). J. Climate, 26, 67756800, https://doi.org/10.1175/JCLI-D-12-00184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, M. C., C. A. Deutsch, and T. Ito, 2016: Finding forced trends in oceanic oxygen. Global Biogeochem. Cycles, 30, 381–397, https://doi.org/10.1002/2015GB005310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lovenduski, N. S., N. Gruber, S. C. Doney, and I. D. Lima, 2007: Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the southern annular mode. Global Biogeochem. Cycles, 21, GB2026, https://doi.org/10.1029/2006GB002900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maher, N., S. McGregor, M. H. England, and A. Sen Gupta, 2015: Effects of volcanism on tropical variability. Geophys. Res. Lett., 42, 60246033, https://doi.org/10.1002/2015GL064751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., M. A. Cane, S. E. Zebiak, and A. Clement, 2005: Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J. Climate, 18, 447456, https://doi.org/10.1175/JCLI-3276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., and A. Timmermann, 2011: The effect of explosive tropical volcanism on ENSO. J. Climate, 24, 21782191, https://doi.org/10.1175/2010JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKinley, G. A., D. J. Pilcher, A. R. Fay, K. Lindsay, M. C. Long, and N. Lovenduski, 2016: Timescales for detection of trends in the ocean carbon sink. Nature, 530, 469472, https://doi.org/10.1038/nature16958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, J. K., K. Lindsay, S. C. Doney, M. C. Long, and K. Misumi, 2013: Marine ecosystem dynamics and biogeochemical cycling in the Community Earth System Model [CESM1 (BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 scenarios. J. Climate, 26, 92919312, https://doi.org/10.1175/JCLI-D-12-00566.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohba, M., H. Shiogama, T. Yokohata, and M. Watanabe, 2013: Impact of strong tropical volcanic eruptions on ENSO simulated in a coupled GCM. J. Climate, 26, 51695182, https://doi.org/10.1175/JCLI-D-12-00471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pausata, F. S., C. Karamperidou, R. Caballero, and D. S. Battisti, 2016: ENSO response to high-latitude volcanic eruptions in the Northern Hemisphere: The role of the initial conditions. Geophys. Res. Lett., 43, 86948702, https://doi.org/10.1002/2016GL069575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollack, J. B., O. B. Toon, C. Sagan, A. Summers, B. Baldwin, and W. Van Camp, 1976: Volcanic explosions and climatic change: A theoretical assessment. J. Geophys. Res., 81, 10711083, https://doi.org/10.1029/JC081i006p01071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Predybaylo, E., G. L. Stenchikov, A. T. Wittenberg, and F. Zeng, 2017: Impacts of a Pinatubo-size volcanic eruption on ENSO. J. Geophys. Res., 122, 925947, https://doi.org/10.1002/2016JD025796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rampino, M. R., and S. Self, 1982: Historic eruptions of Tambora (1815), Krakatau (1883), and Agung (1963), their stratospheric aerosols, and climatic impact. Quat. Res., 18, 127143, https://doi.org/10.1016/0033-5894(82)90065-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N., D. E. Parker, E. Horton, C. Folland, L. Alexander, D. Rowell, E. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191219, https://doi.org/10.1029/1998RG000054.

  • Robock, A., and M. P. Free, 1996: The volcanic record in ice cores for the past 2000 years. Climatic Variations and Forcing Mechanisms of the Last 2000 Years, P. D. Jones, R. S. Bradley, and J. Jouzel, Eds., Springer, 533–546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rödenbeck, C., and Coauthors, 2014: Interannual sea–air CO2 flux variability from an observation-driven ocean mixed-layer scheme. Biogeosciences, 11, 4599–4613, https://doi.org/10.5194/bgd-11-3167-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, K., J. Lin, and T. Frölicher, 2015: Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model. Biogeosciences, 12, 33013320, https://doi.org/10.5194/bg-12-3301-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2014: Volcanic contribution to decadal changes in tropospheric temperature. Nat. Geosci., 7, 185–189, https://doi.org/10.1038/ngeo2098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarmiento, J., 1993: Atmospheric CO2 stalled. Nature, 365, 697698, https://doi.org/10.1038/365697a0.

  • Sato, M., J. E. Hansen, M. P. McCormick, and J. B. Pollack, 1993: Stratospheric aerosol optical depths, 1850–1990. J. Geophys. Res., 98, 22 98722 994, https://doi.org/10.1029/93JD02553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidtko, S., L. Stramma, and M. Visbeck, 2017: Decline in global oceanic oxygen content during the past five decades. Nature, 542, 335339, https://doi.org/10.1038/nature21399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., C. M. Ammann, B. L. Otto-Bliesner, and D. S. Kaufman, 2009: Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model. J. Geophys. Res., 114, D15101, https://doi.org/10.1029/2008JD011222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segschneider, J., and Coauthors, 2013: Impact of an extremely large magnitude volcanic eruption on the global climate and carbon cycle estimated from ensemble Earth system model simulations. Biogeosciences, 10, 669687, https://doi.org/10.5194/bg-10-669-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Severinghaus, J. P., 1995: Studies of the terrestrial O2 and carbon cycles in sand dune gases and in biosphere 2. Ph.D. thesis, Columbia University, 148 pp., https://doi.org/10.2172/477735.

    • Crossref
    • Export Citation
  • Simkin, T., and L. Siebert, 1994: Volcanoes of the World. Geoscience Press, 349 pp.

  • Slawinska, J., and A. Robock, 2018: Impact of volcanic eruptions on decadal to centennial fluctuations of Arctic sea ice extent during the last millennium and on initiation of the Little Ice Age. J. Climate, 31, 21452167, https://doi.org/10.1175/JCLI-D-16-0498.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stenchikov, G. L., I. Kirchner, A. Robock, H.-F. Graf, J. C. Antuña, R. G. Grainger, A. Lambert, and L. Thomason, 1998: Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. J. Geophys. Res., 103, 13 83713 857, https://doi.org/10.1029/98JD00693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stenchikov, G. L., K. Hamilton, R. J. Stouffer, A. Robock, V. Ramaswamy, B. Santer, and H.-F. Graf, 2006: Arctic oscillation response to volcanic eruptions in the IPCC AR4 climate models. J. Geophys. Res., 111, D07107, https://doi.org/10.1029/2005JD006286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stenchikov, G., T. L. Delworth, V. Ramaswamy, R. J. Stouffer, A. Wittenberg, and F. Zeng, 2009: Volcanic signals in oceans. J. Geophys. Res., 114, D16104, https://doi.org/10.1029/2008JD011673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, B. B., R. F. Keeling, M. Heimann, K. D. Six, R. Murnane, and K. Caldeira, 1998: Testing global ocean carbon cycle models using measurements of atmospheric O2 and CO2 concentration. Global Biogeochem. Cycles, 12, 213230, https://doi.org/10.1029/97GB03500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S., J. T. Fasullo, B. L. Otto-Bliesner, R. A. Tomas, and C. Gao, 2017: Role of eruption season in reconciling model and proxy responses to tropical volcanism. Proc. Natl. Acad. Sci. USA, 114, 18221826, https://doi.org/10.1073/pnas.1612505114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., J. Olafsson, J. G. Goddard, D. W. Chipman, and S. Sutherland, 1993: Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study. Global Biogeochem. Cycles, 7, 843878, https://doi.org/10.1029/93GB02263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., S. C. Sutherland, R. A. Feely, and C. E. Cosca, 2003: Decadal variation of the surface water pCO2 in the western and central equatorial Pacific. Science, 302, 852856, https://doi.org/10.1126/science.1088570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712778, https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanninkhof, R., 1992: Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res., 97, 73737382, https://doi.org/10.1029/92JC00188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, https://doi.org/10.1175/2009JCLI3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, X.-H., T. Boyer, K. Trenberth, T. R. Karl, S.-P. Xie, V. Nieves, K.-K. Tung, and D. Roemmich, 2016: The global warming hiatus: Slowdown or redistribution? Earth’s Future, 4, 472482, https://doi.org/10.1002/2016EF000417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanchettin, D., C. Timmreck, H.-F. Graf, A. Rubino, S. Lorenz, K. Lohmann, K. Krüger, and J. Jungclaus, 2012: Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions. Climate Dyn., 39, 419444, https://doi.org/10.1007/s00382-011-1167-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 447 285 0
PDF Downloads 382 266 0

El Niño–Like Physical and Biogeochemical Ocean Response to Tropical Eruptions

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 2 Atmospheric and Ocean Sciences Program, Princeton University, Princeton, New Jersey
  • | 3 National Center for Atmospheric Research, Boulder, Colorado
  • | 4 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
Restricted access

Abstract

The oceanic response to recent tropical eruptions is examined in Large Ensemble (LE) experiments from two fully coupled global climate models, the Community Earth System Model (CESM) and the Geophysical Fluid Dynamics Laboratory Earth System Model (ESM2M), each forced by a distinct volcanic forcing dataset. Following the simulated eruptions of Agung, El Chichón, and Pinatubo, the ocean loses heat and gains oxygen and carbon, in general agreement with available observations. In both models, substantial global surface cooling is accompanied by El Niño–like equatorial Pacific surface warming a year after the volcanic forcing peaks. A mechanistic analysis of the CESM and ESM2M responses to Pinatubo identifies remote wind forcing from the western Pacific as a major driver of this El Niño–like response. Following eruption, faster cooling over the Maritime Continent than adjacent oceans suppresses convection and leads to persistent westerly wind anomalies over the western tropical Pacific. These wind anomalies excite equatorial downwelling Kelvin waves and the upwelling of warm subsurface anomalies in the eastern Pacific, promoting the development of El Niño conditions through Bjerknes feedbacks a year after eruption. This El Niño–like response drives further ocean heat loss through enhanced equatorial cloud albedo, and dominates global carbon uptake as upwelling of carbon-rich waters is suppressed in the tropical Pacific. Oxygen uptake occurs primarily at high latitudes, where surface cooling intensifies the ventilation of subtropical thermocline waters. These volcanically forced ocean responses are large enough to contribute to the observed decadal variability in oceanic heat, carbon, and oxygen.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Additional affiliation: Center for Climate Physics, Institute for Basic Science, Busan, South Korea.

Current affiliation: Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado.

Corresponding author: Yassir A. Eddebbar, yeddebba@ucsd.edu

Abstract

The oceanic response to recent tropical eruptions is examined in Large Ensemble (LE) experiments from two fully coupled global climate models, the Community Earth System Model (CESM) and the Geophysical Fluid Dynamics Laboratory Earth System Model (ESM2M), each forced by a distinct volcanic forcing dataset. Following the simulated eruptions of Agung, El Chichón, and Pinatubo, the ocean loses heat and gains oxygen and carbon, in general agreement with available observations. In both models, substantial global surface cooling is accompanied by El Niño–like equatorial Pacific surface warming a year after the volcanic forcing peaks. A mechanistic analysis of the CESM and ESM2M responses to Pinatubo identifies remote wind forcing from the western Pacific as a major driver of this El Niño–like response. Following eruption, faster cooling over the Maritime Continent than adjacent oceans suppresses convection and leads to persistent westerly wind anomalies over the western tropical Pacific. These wind anomalies excite equatorial downwelling Kelvin waves and the upwelling of warm subsurface anomalies in the eastern Pacific, promoting the development of El Niño conditions through Bjerknes feedbacks a year after eruption. This El Niño–like response drives further ocean heat loss through enhanced equatorial cloud albedo, and dominates global carbon uptake as upwelling of carbon-rich waters is suppressed in the tropical Pacific. Oxygen uptake occurs primarily at high latitudes, where surface cooling intensifies the ventilation of subtropical thermocline waters. These volcanically forced ocean responses are large enough to contribute to the observed decadal variability in oceanic heat, carbon, and oxygen.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Additional affiliation: Center for Climate Physics, Institute for Basic Science, Busan, South Korea.

Current affiliation: Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado.

Corresponding author: Yassir A. Eddebbar, yeddebba@ucsd.edu
Save