• Abernathey, R. P., I. Cerovecki, P. R. Holland, E. Newsom, M. Mazloff, and L. D. Talley, 2016: Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nat. Geosci., 9, 596601, https://doi.org/10.1038/ngeo2749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adkins, J. F., 2013: The role of deep ocean circulation in setting glacial climates. Paleoceanogr. Paleoclimatol., 28, 539561, https://doi.org/10.1002/palo.20046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adkins, J. F., K. McIntyre, and D. Schrag, 2002: The salinity, temperature and δ18O content of the glacial deep ocean. Science, 298, 17691773, https://doi.org/10.1126/science.1076252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, R. F., S. Ali, L. I. Bradtmiller, S. H. H. Nielsen, M. Q. Fleisher, B. E. Anderson, and L. H. Burckle, 2009: Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science, 323, 14431448, https://doi.org/10.1126/science.1167441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balwada, D., K. G. Speer, J. H. LaCasce, W. B. Owens, J. Marshall, and R. Ferrari, 2016: Circulation and stirring in the southeast Pacific Ocean and the Scotia Sea sectors of the Antarctic circumpolar current. J. Phys. Oceanogr., 46, 20052027, https://doi.org/10.1175/JPO-D-15-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1982: Ocean chemistry during glacial time. Geochim. Cosmochim. Acta, 46, 16891705, https://doi.org/10.1016/0016-7037(82)90110-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1991: The great ocean conveyor. Oceanography, 4 (2), 7989, https://doi.org/10.5670/oceanog.1991.07.

  • Brovkin, V., A. Ganopolski, D. Archer, and S. Rahmstorf, 2007: Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry. Paleoceanogr. Paleoclimatol., 22, PA4202, https://doi.org/10.1029/2006PA001380.

    • Search Google Scholar
    • Export Citation
  • Burke, A., A. L. Stewart, J. F. Adkins, R. Ferrari, M. F. Jansen, and A. F. Thompson, 2015: The glacial mid-depth radiocarbon bulge and its implications for the overturning circulation. Paleoceanogr. Paleoclimatol., 30, 10211039, https://doi.org/10.1002/2015PA002778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, W., and D. Oppo, 2005: Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanogr. Paleoclimatol., 20, PA1017, https://doi.org/10.1029/2004PA001021.

    • Search Google Scholar
    • Export Citation
  • de Boer, A. M., D. M. Sigman, J. R. Toggweiler, and J. L. Russell, 2007: Effect of global ocean temperature change on deep ocean ventilation. Paleoceanogr. Paleoclimatol., 22, 19449186, https://doi.org/10.1029/2005PA001242.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., M. F. Jansen, J. F. Adkins, A. Burke, A. L. Stewart, and A. F. Thompson, 2014: Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl. Acad. Sci. USA, 111, 87538758, https://doi.org/10.1073/pnas.1323922111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., L.-P. Nadeau, D. P. Marshall, L. C. Allison, and H. L. Johnson, 2017: A model of the ocean overturning circulation with two closed basins and a reentrant channel. J. Phys. Oceanogr., 47, 28872906, https://doi.org/10.1175/JPO-D-16-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebbie, G., and P. Huybers, 2012: The mean age of ocean waters inferred from radiocarbon observations: Sensitivity to surface sources and accounting for mixing histories. J. Phys. Oceanogr., 42, 291305, https://doi.org/10.1175/JPO-D-11-043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gersonde, R., X. Crosta, A. Abelmann, and L. Armand, 2005: Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum—A circum-Antarctic view based on siliceous microfossil records. Quat. Sci. Rev., 24, 869896, https://doi.org/10.1016/j.quascirev.2004.07.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the modeling eddies in the Southern Ocean (meso) project. J. Phys. Oceanogr., 36, 22322252, https://doi.org/10.1175/JPO2980.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M., 2017: Glacial ocean circulation and stratification explained by reduced atmospheric temperature. Proc. Natl. Acad. Sci. USA, 114, 4550, https://doi.org/10.1073/pnas.1610438113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M., and L.-P. Nadeau, 2016: The effect of Southern Ocean surface buoyancy loss on the deep-ocean circulation and stratification. J. Phys. Oceanogr., 46, 34553470, https://doi.org/10.1175/JPO-D-16-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C. S., and P. Cessi, 2016: Interbasin transport of the meridional overturning circulation. J. Phys. Oceanogr., 46, 11571169, https://doi.org/10.1175/JPO-D-15-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., S. Shin, R. Webb, W. Lewis, and B. Otto-Bliesner, 2005: Atmospheric CO2 forcing on glacial thermohaline circulation and climate. Geophys. Res. Lett., 32, L02706, https://doi.org/10.1029/2004GL021929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, https://doi.org/10.1175/JPO3130.1.

  • Lund, D., J. Adkins, and R. Ferrari, 2011: Abyssal Atlantic circulation during the Last Glacial Maximum: Constraining the ratio between transport and vertical mixing. Paleoceanogr. Paleoclimatol., 26, PA1213, https://doi.org/10.1029/2010PA001938.

    • Search Google Scholar
    • Export Citation
  • Lynch-Stieglitz, J., and Coauthors, 2007: Atlantic meridional overturning circulation during the Last Glacial Maximum. Science, 316, 6669, https://doi.org/10.1126/science.1137127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahowald, N., K. Kohfeld, M. Hansson, Y. Balkanski, S. P. Harrison, I. C. Prentice, M. Schulz, and H. Rodhe, 1999: Dust sources and deposition during the Last Glacial Maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments. J. Geophys. Res., 104, 15 89515 916, https://doi.org/10.1029/1999JD900084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzocchi, A., and M. F. Jansen, 2017: Connecting Antarctic sea ice to deep-ocean circulation in modern and glacial climate simulations. Geophys. Res. Lett., 44, 62866295, https://doi.org/10.1002/2017GL073936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M. D., M. Simons, J. F. Adkins, and S. E. Minson, 2015: The information content of pore fluid δ18O and [Cl−]. J. Phys. Oceanogr., 45, 20702094, https://doi.org/10.1175/JPO-D-14-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munday, D. R., H. L. Johnson, and D. P. Marshall, 2013: Eddy saturation of equilibrated circumpolar currents. J. Phys. Oceanogr., 43, 507532, https://doi.org/10.1175/JPO-D-12-095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2013: Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett., 40, 31333137, https://doi.org/10.1002/grl.50542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, J., and Coauthors, 2016: Evolution of South Atlantic density and chemical stratification across the last deglaciation. Proc. Natl. Acad. Sci. USA, 113, 514519, https://doi.org/10.1073/pnas.1511252113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roche, D. M., X. Crosta, and H. Renssen, 2012: Evaluating Southern Ocean response for the Last Glacial Maximum and pre-industrial climates: PMIP-2 models and data evidence. Quat. Sci. Rev., 56, 99106, https://doi.org/10.1016/j.quascirev.2012.09.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, P. L., 1986: Characteristic-based schemes for the Euler equations. Annu. Rev. Fluid Mech., 18, 337365, https://doi.org/10.1146/annurev.fl.18.010186.002005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmittner, A., 2003: Southern Ocean sea ice and radiocarbon ages of glacial bottom waters. Earth Planet. Sci. Lett., 213, 5262, https://doi.org/10.1016/S0012-821X(03)00291-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, S.-I., Z. Liu, B. L. Otto-Bliesner, J. E. Kutzbach, and S. J. Vavrus, 2003: Southern Ocean sea-ice control of the glacial North Atlantic thermohaline circulation. Geophys. Res. Lett., 30, 1096, https://doi.org/10.1029/2002GL015513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigman, D. M., and E. A. Boyle, 2000: Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407, 859869, https://doi.org/10.1038/35038000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigman, D. M., M. P. Hain, and G. H. Haug, 2010: The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature, 466, 4755, https://doi.org/10.1038/nature09149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, L. C., and Coauthors, 2017: Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2. Nat. Commun., 8, 16010, https://doi.org/10.1038/ncomms16010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, B. B., and R. F. Keeling, 2000: The influence of Antarctic sea ice on glacial-interglacial CO2 variations. Nature, 404, 171174, https://doi.org/10.1038/35004556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., I. Eisenman, and A. Stewart, 2016: The influence of Southern Ocean surface buoyancy forcing on glacial-interglacial changes in the global deep ocean stratification. Geophys. Res. Lett., 43, 81248132, https://doi.org/10.1002/2016GL070058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L., 2013: Closure of the global overturning circulation through the Indian, Pacific and Southern Oceans: Schematics and transports. Oceanography, 26 (1), 8097, https://doi.org/10.5670/oceanog.2013.07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., A. L. Stewart, and T. Bischoff, 2016: A multibasin residual-mean model for the global overturning circulation. J. Phys. Oceanogr., 46, 25832604, https://doi.org/10.1175/JPO-D-15-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., 1999: Variation of atmospheric CO2 by ventilation of the ocean’s deepest water. Paleoceanogr. Paleoclimatol., 14, 571588, https://doi.org/10.1029/1999PA900033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., 2009: Shifting westerlies. Science, 323, 14341435, https://doi.org/10.1126/science.1169823.

  • Watson, A. J., G. K. Vallis, and M. Nikurashin, 2015: Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2. Nat. Geosci., 8, 861864, https://doi.org/10.1038/ngeo2538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2016a: Last Glacial Maximum and deglacial abyssal seawater oxygen isotopic ratios. Climate Past, 12, 12811296, https://doi.org/10.5194/cp-12-1281-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2016b: Pore fluids and the LGM ocean salinity—Reconsidered. Quat. Sci. Rev., 135, 154170, https://doi.org/10.1016/j.quascirev.2016.01.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 434 244 0
PDF Downloads 362 189 0

Antarctic Sea Ice Control on the Depth of North Atlantic Deep Water

View More View Less
  • 1 Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Quebec, Canada
  • | 2 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
  • | 3 Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois
Restricted access

Abstract

Changes in deep-ocean circulation and stratification have been argued to contribute to climatic shifts between glacial and interglacial climates by affecting the atmospheric carbon dioxide concentrations. It has been recently proposed that such changes are associated with variations in Antarctic sea ice through two possible mechanisms: an increased latitudinal extent of Antarctic sea ice and an increased rate of Antarctic sea ice formation. Both mechanisms lead to an upward shift of the Atlantic meridional overturning circulation (AMOC) above depths where diapycnal mixing is strong (above 2000 m), thus decoupling the AMOC from the abyssal overturning circulation. Here, these two hypotheses are tested using a series of idealized two-basin ocean simulations. To investigate independently the effect of an increased latitudinal ice extent from the effect of an increased ice formation rate, sea ice is parameterized as a latitude strip over which the buoyancy flux is negative. The results suggest that both mechanisms can effectively decouple the two cells of the meridional overturning circulation (MOC), and that their effects are additive. To illustrate the role of Antarctic sea ice in decoupling the AMOC and the abyssal overturning cell, the age of deep-water masses is estimated. An increase in both the sea ice extent and its formation rate yields a dramatic “aging” of deep-water masses if the sea ice is thick and acts as a lid, suppressing air–sea fluxes. The key role of vertical mixing is highlighted by comparing results using different profiles of vertical diffusivity. The implications of an increase in water mass ages for storing carbon in the deep ocean are discussed.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Louis-Philippe Nadeau, louis-philippe_nadeau@uqar.ca

Abstract

Changes in deep-ocean circulation and stratification have been argued to contribute to climatic shifts between glacial and interglacial climates by affecting the atmospheric carbon dioxide concentrations. It has been recently proposed that such changes are associated with variations in Antarctic sea ice through two possible mechanisms: an increased latitudinal extent of Antarctic sea ice and an increased rate of Antarctic sea ice formation. Both mechanisms lead to an upward shift of the Atlantic meridional overturning circulation (AMOC) above depths where diapycnal mixing is strong (above 2000 m), thus decoupling the AMOC from the abyssal overturning circulation. Here, these two hypotheses are tested using a series of idealized two-basin ocean simulations. To investigate independently the effect of an increased latitudinal ice extent from the effect of an increased ice formation rate, sea ice is parameterized as a latitude strip over which the buoyancy flux is negative. The results suggest that both mechanisms can effectively decouple the two cells of the meridional overturning circulation (MOC), and that their effects are additive. To illustrate the role of Antarctic sea ice in decoupling the AMOC and the abyssal overturning cell, the age of deep-water masses is estimated. An increase in both the sea ice extent and its formation rate yields a dramatic “aging” of deep-water masses if the sea ice is thick and acts as a lid, suppressing air–sea fluxes. The key role of vertical mixing is highlighted by comparing results using different profiles of vertical diffusivity. The implications of an increase in water mass ages for storing carbon in the deep ocean are discussed.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Louis-Philippe Nadeau, louis-philippe_nadeau@uqar.ca
Save