• Abbot, D. S., and E. Tziperman, 2008a: Sea ice, high-latitude convection, and equable climates. Geophys. Res. Lett., 35, L03702, https://doi.org/10.1029/2007GL032286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., and E. Tziperman, 2008b: A high-latitude convective cloud feedback and equable climates. Quart. J. Roy. Meteor. Soc., 134, 165185, https://doi.org/10.1002/qj.211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., and M. J. Webb, 2018: The dependence of global cloud and lapse rate feedbacks on the spatial structure of tropical Pacific warming. J. Climate, 31, 641654, https://doi.org/10.1175/JCLI-D-17-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., J. M. Gregory, and M. J. Webb, 2015: The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models. J. Climate, 28, 16301648, https://doi.org/10.1175/JCLI-D-14-00545.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armour, K. C., C. M. Bitz, and G. H. Roe, 2013: Time-varying climate sensitivity from regional feedbacks. J. Climate, 26, 45184534, https://doi.org/10.1175/JCLI-D-12-00544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and J. L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, https://doi.org/10.1029/2005GL023851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, https://doi.org/10.1175/JCLI3819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

  • Bretherton, C. S., 2015: Insights into low-latitude cloud feedbacks from high-resolution models. Philos. Trans. Roy. Soc., 373A, 20140415, https://doi.org/10.1098/rsta.2014.0415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brient, F., T. Schneider, Z. H. Tan, S. Bony, X. Qu, and A. Hall, 2016: Shallowness of tropical low clouds as a predictor of climate models’ response to warming. Climate Dyn., 47, 433449, https://doi.org/10.1007/s00382-015-2846-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burls, N. J., and A. V. Fedorov, 2014a: What controls the mean east–west sea surface temperature gradient in the equatorial Pacific: The role of cloud albedo. J. Climate, 27, 27572778, https://doi.org/10.1175/JCLI-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burls, N. J., and A. V. Fedorov, 2014b: Simulating Pliocene warmth and a permanent El Niño–like state: The role of cloud albedo. Paleoceanography, 29, 893910, https://doi.org/10.1002/2014PA002644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burls, N. J., and A. V. Fedorov, 2017: Wetter subtropics in a warmer world: Contrasting past and future hydrological cycles. Proc. Natl. Acad. Sci. USA, 114, 12 88812 893, https://doi.org/10.1073/pnas.1703421114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burls, N. J., L. Muir, E. M. Vincent, and A. Fedorov, 2017: Extra-tropical origin of equatorial Pacific cold bias in climate models with links to cloud albedo. Climate Dyn., 49, 20932113, https://doi.org/10.1007/s00382-016-3435-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldwell, P. M., M. D. Zelinka, K. E. Taylor, and K. Marvel, 2016: Quantifying the sources of intermodel spread in equilibrium climate sensitivity. J. Climate, 29, 513524, https://doi.org/10.1175/JCLI-D-15-0352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and J. M. Gregory, 2017: Relationship of tropospheric stability to climate sensitivity and Earth’s observed radiation budget. Proc. Natl. Acad. Sci. USA, 114, 13 12613 131, https://doi.org/10.1073/pnas.1714308114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., M. D. Zelinka, and D. L. Hartmann, 2014: The response of the Southern Hemispheric eddy-driven jet to future changes in shortwave radiation in CMIP5. Geophys. Res. Lett., 41, 32443250, https://doi.org/10.1002/2014GL060043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 21902196, https://doi.org/10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, https://doi.org/10.1038/ngeo868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 226 pp., https://doi.org/10.5065/D63N21CH.

    • Crossref
    • Export Citation
  • Cronin, T. W., and E. Tziperman, 2015: Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming. Proc. Natl. Acad. Sci. USA, 112, 11 49011 495, https://doi.org/10.1073/pnas.1510937112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, T. W., H. Li, and E. Tziperman, 2017: Suppression of Arctic air formation with climate warming: Investigation with a two-dimensional cloud-resolving model. J. Atmos. Sci., 74, 27172736, https://doi.org/10.1175/JAS-D-16-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowsett, H. J., and Coauthors, 2013: Sea surface temperature of the mid-Piacenzian Ocean: A data–model comparison. Sci. Rep., 3, 2013, https://doi.org/10.1038/srep02013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastman, R., and S. G. Warren, 2013: A 39-yr survey of cloud changes from land stations worldwide 1971–2009: Long-term trends, relation to aerosols, and expansion of the tropical belt. J. Climate, 26, 12861303, https://doi.org/10.1175/JCLI-D-12-00280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, D., and Coauthors, 2018: Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry. Proc. Natl. Acad. Sci. USA, 115, 11741179, https://doi.org/10.1073/pnas.1714744115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., C. M. Brierley, K. T. Lawrence, Z. Liu, P. S. Dekens, and A. C. Ravelo, 2013: Patterns and mechanisms of early Pliocene warmth. Nature, 496, 4349, https://doi.org/10.1038/nature12003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., N. J. Burls, K. T. Lawrence, and L. C. Peterson, 2015: Tightly linked zonal and meridional sea surface temperature gradients over the past five million years. Nat. Geosci., 8, 975980, https://doi.org/10.1038/ngeo2577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866, https://doi.org/10.1017/CBO9781107415324.020.

    • Crossref
    • Export Citation
  • Geoffroy, O., S. C. Sherwood, and D. Fuchs, 2017: On the role of the stratiform cloud scheme in the inter-model spread of cloud feedback. J. Adv. Model. Earth Syst., 9, 423437, https://doi.org/10.1002/2016MS000846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldner, A., N. Herold, and M. Huber, 2014: The challenge of simulating the warmth of the mid-Miocene climatic optimum in CESM1. Climate Past, 10, 523536, https://doi.org/10.5194/cp-10-523-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2014: Is climate sensitivity related to dynamical sensitivity? A Southern Hemisphere perspective. Geophys. Res. Lett., 41, 534540, https://doi.org/10.1002/2013GL058466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huber, M., 2013: A sensitivity to history. Nat. Geosci., 6, 1516, https://doi.org/10.1038/ngeo1695.

  • Huber, M., and R. Caballero, 2011: The early Eocene equable climate problem revisited. Climate Past, 7, 603633, https://doi.org/10.5194/cp-7-603-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1535 pp.

  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, https://doi.org/10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and C. A. Shields, 2013: Sensitivity of the Palaeocene-Eocene Thermal Maximum climate to cloud properties. Philos. Trans. Roy. Soc., 371A, 20130093, https://doi.org/10.1098/rsta.2013.0093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirk-Davidoff, D. B., D. P. Schrag, and J. G. Anderson, 2002: On the feedback of stratospheric clouds on polar climate. Geophys. Res. Lett., 29, 1556, https://doi.org/10.1029/2002GL014659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8, 21812199, https://doi.org/10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kump, L. R., and D. Pollard, 2008: Amplification of cretaceous warmth by biological cloud feedbacks. Science, 320, 195, https://doi.org/10.1126/science.1153883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, B., and Coauthors, 2010: Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance. Atmos. Chem. Phys., 10, 19231930, https://doi.org/10.5194/acp-10-1923-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lipat, B. R., G. Tselioudis, K. M. Grise, and L. M. Polvani, 2017: CMIP5 models’ shortwave cloud radiative response and climate sensitivity linked to the climatological Hadley cell extent. Geophys. Res. Lett., 44, 57395748, https://doi.org/10.1002/2017GL073151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z. Y., 1998: The role of ocean in the response of tropical climatology to global warming: The west–east SST contrast. J. Climate, 11, 864875, https://doi.org/10.1175/1520-0442(1998)011<0864:TROOIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z. Y., and B. Y. Huang, 1997: A coupled theory of tropical climatology: Warm pool, cold tongue, and Walker circulation. J. Climate, 10, 16621679, https://doi.org/10.1175/1520-0442(1997)010<1662:ACTOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lunt, D. J., and Coauthors, 2013: Warm climates of the past—A lesson for the future? Philos. Trans. Roy. Soc., 371A, 20130146, https://doi.org/10.1098/rsta.2013.0146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y. Y., J. Lu, F. K. Liu, and O. Garuba, 2017: The role of ocean dynamical thermostat in delaying the El Niño–like response over the equatorial Pacific to climate warming. J. Climate, 30, 28112827, https://doi.org/10.1175/JCLI-D-16-0454.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., J. R. Scott, K. C. Armour, J. M. Campin, M. Kelley, and A. Romanou, 2015: The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Climate Dyn., 44, 22872299, https://doi.org/10.1007/s00382-014-2308-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., 2016: Clouds cooled the Earth. Nat. Geosci., 9, 865867, https://doi.org/10.1038/ngeo2838.

  • Mauritsen, T., and B. Stevens, 2015: Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in models. Nat. Geosci., 8, 346351, https://doi.org/10.1038/ngeo2414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., and T. Schneider, 2011: Changes in zonal surface temperature gradients and Walker circulations in a wide range of climates. J. Climate, 24, 47574768, https://doi.org/10.1175/2011JCLI4042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J. R., R. J. Allen, A. T. Evan, M. D. Zelinka, C. W. O’Dell, and S. A. Klein, 2016: Evidence for climate change in the satellite cloud record. Nature, 536, 7275, https://doi.org/10.1038/nature18273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otto, A., and Coauthors, 2013: Energy budget constraints on climate response. Nat. Geosci., 6, 415416, https://doi.org/10.1038/ngeo1836.

  • Peters, R. B., and L. C. Sloan, 2000: High concentrations of greenhouse gases and polar stratospheric clouds: A possible solution to high-latitude faunal migration at the latest Paleocene thermal maximum. Geology, 28, 979982, https://doi.org/10.1130/0091-7613(2000)28<979:HCOGGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, G. H., N. Feldl, K. C. Armour, Y. T. Hwang, and D. M. W. Frierson, 2015: The remote impacts of climate feedbacks on regional climate predictability. Nat. Geosci., 8, 135139, https://doi.org/10.1038/ngeo2346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sagoo, N., P. Valdes, R. Flecker, and L. J. Gregoire, 2013: The early Eocene equable climate problem: Can perturbations of climate model parameters identify possible solutions? Philos. Trans. Roy. Soc., 371A, 20130123, https://doi.org/10.1098/rsta.2013.0123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salzmann, U., and Coauthors, 2013: Challenges in quantifying Pliocene terrestrial warming revealed by data–model discord. Nat. Climate Change, 3, 969974, https://doi.org/10.1038/nclimate2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and R. Murtugudde, 1997: Ocean dynamics, thermocline adjustment, and regulation of tropical SST. J. Climate, 10, 521534, https://doi.org/10.1175/1520-0442(1997)010<0521:ODTAAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and Coauthors, 2016: Storm track processes and the opposing influences of climate change. Nat. Geosci., 9, 656664, https://doi.org/10.1038/ngeo2783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., S. Bony, and J. L. Dufresne, 2014: Spread in model climate sensitivity traced to atmospheric convective mixing. Nature, 505, 3742, https://doi.org/10.1038/nature12829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shields, C. A., D. A. Bailey, G. Danabasoglu, M. Jochum, J. T. Kiehl, S. Levis, and S. Park, 2012: The low-resolution CCSM4. J. Climate, 25, 39934014, https://doi.org/10.1175/JCLI-D-11-00260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloan, L. C., and E. J. Barron, 1990: “Equable” climates during Earth history? Geology, 18, 489492, https://doi.org/10.1130/0091-7613(1990)018<0489:ECDEH>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloan, L. C., J. C. G. Walker, T. C. Moore, D. K. Rea, and J. C. Zachos, 1992: Possible methane-induced polar warming in the early Eocene. Nature, 357, 320322, https://doi.org/10.1038/357320a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D. Z., and Z. Y. Liu, 1996: Dynamic ocean–atmosphere coupling: A thermostat for the tropics. Science, 272, 11481150, https://doi.org/10.1126/science.272.5265.1148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomassini, L., A. Voigt, and B. Stevens, 2015: On the connection between tropical circulation, convective mixing, and climate sensitivity. Quart. J. Roy. Meteor. Soc., 141, 14041416, https://doi.org/10.1002/qj.2450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., B. R. Lipat, D. Konsta, K. M. Grise, and L. M. Polvani, 2016: Midlatitude cloud shifts, their primary link to the Hadley cell, and their diverse radiative effects. Geophys. Res. Lett., 43, 45944601, https://doi.org/10.1002/2016GL068242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Unger, N., and X. Yue, 2014: Strong chemistry–climate feedbacks in the Pliocene. Geophys. Res. Lett., 41, 527533, https://doi.org/10.1002/2013GL058773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Upchurch, G. R., J. Kiehl, C. Shields, J. Scherer, and C. Scotese, 2015: Latitudinal temperature gradients and high-latitude temperatures during the latest Cretaceous: Congruence of geologic data and climate models. Geology, 43, 683686, https://doi.org/10.1130/G36802.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vial, J., J. L. Dufresne, and S. Bony, 2013: On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Climate Dyn., 41, 33393362, https://doi.org/10.1007/s00382-013-1725-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vial, J., S. Bony, B. Stevens, and R. Vogel, 2017: Mechanisms and model diversity of trade-wind shallow cumulus cloud feedbacks: A review. Surv. Geophys., 38, 13311353, https://doi.org/10.1007/s10712-017-9418-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., L. Zhang, S. Lee, L. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nat. Climate Change, 4, 201205, https://doi.org/10.1038/nclimate2118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, M. J., and Coauthors, 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dyn., 27, 1738, https://doi.org/10.1007/s00382-006-0111-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S. P., C. Deser, G. A. Vecchi, J. Ma, H. Y. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, https://doi.org/10.1175/2009JCLI3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012: Computing and partitioning cloud feedbacks using cloud property histograms. Part II: Attribution to changes in cloud amount, altitude, and optical depth. J. Climate, 25, 37363754, https://doi.org/10.1175/JCLI-D-11-00249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., D. A. Randall, M. J. Webb, and S. A. Klein, 2017: Clearing clouds of uncertainty. Nat. Climate Change, 7, 674678, https://doi.org/10.1038/nclimate3402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., M. D. Zelinka, and S. A. Klein, 2016: Impact of decadal cloud variations on the Earth’s energy budget. Nat. Geosci., 9, 871874, https://doi.org/10.1038/ngeo2828.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 607 272 1
PDF Downloads 506 256 1

The Strength of Low-Cloud Feedbacks and Tropical Climate: A CESM Sensitivity Study

View More View Less
  • 1 Center for Ocean–Land–Atmosphere Studies, George Mason University, Fairfax, Virginia
Restricted access

Abstract

Variability in the strength of low-cloud feedbacks across climate models is the primary contributor to the spread in their estimates of equilibrium climate sensitivity (ECS). This raises the question: What are the regional implications for key features of tropical climate of globally weak versus strong low-cloud feedbacks in response to greenhouse gas–induced warming? To address this question and formalize our understanding of cloud controls on tropical climate, we perform a suite of idealized fully coupled and slab-ocean climate simulations across which we systematically scale the strength of the low-cloud-cover feedback under abrupt 2 × CO2 forcing within a single model, thereby isolating the impact of low-cloud feedback strength. The feedback strength is varied by modifying the stratus cloud fraction so that it is a function of not only local conditions but also global temperature in a series of abrupt 2 × CO2 sensitivity experiments. The unperturbed decrease in low cloud cover (LCC) under 2 × CO2 is greatest in the mid- and high-latitude oceans, and the subtropical eastern Pacific and Atlantic, a pattern that is magnified as the feedback strength is scaled. Consequently, sea surface temperature (SST) increases more in these regions as well as the Pacific cold tongue. As the strength of the low-cloud feedback increases this results in not only increased ECS, but also an enhanced reduction of the large-scale zonal and meridional SST gradients (structural climate sensitivity), with implications for the atmospheric Hadley and Walker circulations, as well as the hydrological cycle. The relevance of our results to simulating past warm climate is also discussed.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ehsan Erfani, eerfani@gmu.edu

Abstract

Variability in the strength of low-cloud feedbacks across climate models is the primary contributor to the spread in their estimates of equilibrium climate sensitivity (ECS). This raises the question: What are the regional implications for key features of tropical climate of globally weak versus strong low-cloud feedbacks in response to greenhouse gas–induced warming? To address this question and formalize our understanding of cloud controls on tropical climate, we perform a suite of idealized fully coupled and slab-ocean climate simulations across which we systematically scale the strength of the low-cloud-cover feedback under abrupt 2 × CO2 forcing within a single model, thereby isolating the impact of low-cloud feedback strength. The feedback strength is varied by modifying the stratus cloud fraction so that it is a function of not only local conditions but also global temperature in a series of abrupt 2 × CO2 sensitivity experiments. The unperturbed decrease in low cloud cover (LCC) under 2 × CO2 is greatest in the mid- and high-latitude oceans, and the subtropical eastern Pacific and Atlantic, a pattern that is magnified as the feedback strength is scaled. Consequently, sea surface temperature (SST) increases more in these regions as well as the Pacific cold tongue. As the strength of the low-cloud feedback increases this results in not only increased ECS, but also an enhanced reduction of the large-scale zonal and meridional SST gradients (structural climate sensitivity), with implications for the atmospheric Hadley and Walker circulations, as well as the hydrological cycle. The relevance of our results to simulating past warm climate is also discussed.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ehsan Erfani, eerfani@gmu.edu
Save