• Barnes, E. A., and J. A. Screen, 2015: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? Wiley Interdiscip. Rev.: Climate Change, 6, 277286, https://doi.org/10.1002/wcc.337.

    • Search Google Scholar
    • Export Citation
  • Benson, B. J., and Coauthors, 2012: Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005). Climatic Change, 112, 299323, https://doi.org/10.1007/s10584-011-0212-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, Y., C.-Q. Ke, and Z. Duan, 2017: Monitoring ice variations in Qinghai Lake from 1979 to 2016 using passive microwave remote sensing data. Sci. Total Environ., 607–608, 120131, https://doi.org/10.1016/j.scitotenv.2017.07.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and R. Huang, 2012: Excitation mechanisms of the teleconnection patterns affecting the July precipitation in northwest China. J. Climate, 25, 78347851, https://doi.org/10.1175/JCLI-D-11-00684.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, H., Y. Song, and M. Zhang, 2018: Hydrological trend of Qinghai Lake over the last 60 years: Driven by climate variations or human activities? J. Water Climate Change, jwc2018033, https://doi.org/10.2166/wcc.2018.033.

    • Crossref
    • Export Citation
  • Edmon, H. J., B. J. Hoskins, and M. E. Mcintyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616, https://doi.org/10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22, 123.

  • Guo, D., J. Sun, and E. Yu, 2018: Evaluation of CORDEX regional climate models in simulating temperature and precipitation on the Tibetan Plateau. Atmos. Ocean. Sci. Lett., 11, 219227, https://doi.org/10.1080/16742834.2018.1451725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, S., Y. Gao, T. Furevik, H. Wang, and F. Li, 2018: Teleconnection between sea ice in the Barents Sea in June and the Silk Road, Pacific–Japan and East Asian rainfall patterns in August. Adv. Atmos. Sci., 35, 5264, https://doi.org/10.1007/s00376-017-7029-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaiser, R., K. Dethloff, D. Handorf, A. Rinke, and J. Cohen, 2012: Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus, 64A, 11595, https://doi.org/10.3402/tellusa.v64i0.11595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ke, C.-Q., A.-Q. Tao, and X. Jin, 2013: Variability in the ice phenology of Nam Co Lake in central Tibet from scanning multichannel microwave radiometer and special sensor microwave/imager: 1978 to 2013. J. Appl. Remote Sens., 7, 073477, https://doi.org/10.1117/1.JRS.7.073477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korhonen, J., 2006: Long-term changes in lake ice cover in Finland. Hydrol. Res., 37, 347363, https://doi.org/10.2166/nh.2006.019.

  • Kug, J.-S., J.-H. Jeong, Y.-S. Jang, B.-M. Kim, C. K. Folland, S.-K. Min, and S.-W. Son, 2015: Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci., 8, 759762, https://doi.org/10.1038/ngeo2517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latifovic, R., and D. Pouliot, 2007: Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record. Remote Sens. Environ., 106, 492507, https://doi.org/10.1016/j.rse.2006.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, F., H. Wang, and Y. Gao, 2015: The change in sea ice cover is responsible for non-uniform variation in winter temperature over East Asia. Atmos. Oceanic Sci. Lett., 8, 376382, https://doi.org/10.3878/AOSL20150039.

    • Search Google Scholar
    • Export Citation
  • Li, H., H. Chen, H. Wang, J. Sun, and J. Ma, 2018: Can Barents Sea ice decline in spring enhance summer hot drought events over northeastern China? J. Climate, 31, 47054725, https://doi.org/10.1175/JCLI-D-17-0429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 40744079, https://doi.org/10.1073/pnas.1114910109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., H. Chen, H. Wang, and Y. Qiu, 2018: The impact of the NAO on the delayed break-up date of lake ice over the southern Tibetan Plateau. J. Climate, 31, 90739086, https://doi.org/10.1175/JCLI-D-18-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livingstone, D. M., 1997: Break-up dates of Alpine lakes as proxy data for local and regional mean surface air temperatures. Climatic Change, 37, 407439, https://doi.org/10.1023/A:1005371925924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869873, https://doi.org/10.1038/ngeo2277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsolini, Y. J., L. Zhang, D. Peters, K. Fraedrich, X. Zhu, A. Schneidereit, and B. Hurk, 2015: Extreme precipitation events over north China in August 2010 and their link to eastward-propagating wave-trains across Eurasia: Observations and monthly forecasting. Quart. J. Roy. Meteor. Soc., 141, 30973105, https://doi.org/10.1002/qj.2594.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Outten, S. D., and I. Esau, 2012: A link between Arctic sea ice and recent cooling trends over Eurasia. Climatic Change, 110, 10691075, https://doi.org/10.1007/s10584-011-0334-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, B., and Q. Huang, 1998: Evaluation of the climatic change impacts on the inland lake—A case study of Lake Qinghai, China. Climatic Change, 39, 695714, https://doi.org/10.1023/A:1005319616456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangwala, I., J. R. Miller, and M. Xu, 2009: Warming in the Tibetan Plateau: Possible influences of the changes in surface water vapor. Geophys. Res. Lett., 36, L06703, https://doi.org/10.1029/2009GL037245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, D. M., R. A. Ragotzkie, and J. J. Magnuson, 1992: Lake ice records used to detect historical and future climatic changes. Climatic Change, 21, 407427, https://doi.org/10.1007/BF00141379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sánchez-López, G., and Coauthors, 2015: The effects of the NAO on the ice phenology of Spanish alpine lakes. Climatic Change, 130, 101113, https://doi.org/10.1007/s10584-015-1353-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seviour, W. J. M., 2017: Weakening and shift of the Arctic stratospheric polar vortex: Internal variability or forced response? Geophys. Res. Lett., 44, 33653373, https://doi.org/10.1002/2017GL073071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaman, J., and E. Tziperman, 2005: The effect of ENSO on Tibetan Plateau snow depth: A stationary wave teleconnection mechanism and implications for the South Asian monsoons. J. Climate, 18, 20672079, https://doi.org/10.1175/JCLI3391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. L., P. J. Kushner, and J. Cohen, 2011: The role of linear interference in northern annular mode variability associated with Eurasian snow cover extent. J. Climate, 24, 61856202, https://doi.org/10.1175/JCLI-D-11-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, M., J. Liu, H. Liu, X. Ren, and X. Wang, 2012: Associations between the autumn Arctic sea ice and North American winter precipitation. Atmos. Ocean. Sci. Lett., 5, 212218, https://doi.org/10.1080/16742834.2012.11446992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2005: Geographical dependence of upper-level blocking formation associated with intraseasonal amplification of the Siberian high. J. Atmos. Sci., 62, 44414449, https://doi.org/10.1175/JAS3628.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd, M. C., and A. W. Mackay, 2003: Large-scale climatic controls on Lake Baikal ice cover. J. Climate, 16, 31863199, https://doi.org/10.1175/1520-0442(2003)016<3186:LCCOLB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vihma, T., 2014: Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys., 35, 11751214, https://doi.org/10.1007/s10712-014-9284-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., H. Long, X. Li, and F. Yu, 2014: Evaluation of changes in ecological security in China’s Qinghai Lake Basin from 2000 to 2013 and the relationship to land use and climate change. Environ. Earth Sci., 72, 341354, https://doi.org/10.1007/s12665-013-2955-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H.-J., and H. Chen, 2016: Understanding the recent trend of haze pollution in eastern China: Role of climate change. Atmos. Chem. Phys., 16, 42054211, https://doi.org/10.5194/acp-16-4205-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H.-J., and J. Sun, 2009: Variability of northeast China river break-up date. Adv. Atmos. Sci., 26, 701706, https://doi.org/10.1007/s00376-009-9035-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H.-J., H. Chen, and J. Liu, 2015: Arctic sea ice decline intensified haze pollution in eastern China. Atmos. Ocean. Sci. Lett., 8, 19, https://doi.org/10.3878/AOSL20140081.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and J. Liu, 2016: Delving into the relationship between autumn Arctic sea ice and central-eastern Eurasian winter climate. Atmos. Ocean. Sci. Lett., 9, 366374, https://doi.org/10.1080/16742834.2016.1207482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., Y. Wu, J. Chang, X. Zhang, and D. Peng, 2017: Temporal and spatial variation of lake ice phenology and its influencing factors in the Tibetan Plateau (in Chinese). J. Beijing Univ. Technol., 43, 701709.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., 2004: Asian jet waveguide and a downstream extension of the North Atlantic Oscillation. J. Climate, 17, 46744691, https://doi.org/10.1175/JCLI-3228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xin, X., T. Zhou, and R. Yu, 2010: Increased Tibetan Plateau snow depth: An indicator of the connection between enhanced winter NAO and late-spring tropospheric cooling over East Asia. Adv. Atmos. Sci., 27, 788794, https://doi.org/10.1007/s00376-009-9071-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., L. Ma, M. Ma, H. Zhang, and W. Yuan, 2017: Spatial–temporal variability of snow cover and depth in the Qinghai–Tibetan Plateau. J. Climate, 30, 15211533, https://doi.org/10.1175/JCLI-D-15-0732.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, T., and Coauthors, 2012: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Climate Change, 2, 663667, https://doi.org/10.1038/nclimate1580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, X., L. Li, J. Zhao, M. Sun, J. Li, P. Gong, and L. An, 2016: Spatial-temporal variations of lake ice phenology in the Hoh Xil region from 2000 to 2011. J. Geogr. Sci., 26, 7082, https://doi.org/10.1007/s11442-016-1255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Q., S. Kang, N. Pepin, W.-A. Flügel, A. Sanchez-Lorenzo, Y. Yan, and Y. Zhang, 2010: Climate warming and associated changes in atmospheric circulation in the eastern and central Tibetan Plateau from a homogenized dataset. Global Planet. Change, 72, 1124, https://doi.org/10.1016/j.gloplacha.2010.04.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Q., S. Kang, G. Ren, K. Fraedrich, N. Pepin, Y. Yan, and L. Ma, 2011: Observed changes in snow depth and number of snow days in the eastern and central Tibetan Plateau. Climate Res., 46, 171183, https://doi.org/10.3354/cr00985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., H. Xie, S. Duan, M. Tian, and D. Yi, 2011: Water level variation of Lake Qinghai from satellite and in situ measurements under climate change. J. Appl. Remote Sens., 5, 053532, https://doi.org/10.1117/1.3601363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., R. Zhang, and Z. Zuo, 2017: Impact of Eurasian spring snow decrement on East Asian summer precipitation. J. Climate, 30, 34213437, https://doi.org/10.1175/JCLI-D-16-0214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., K. R. Sperber, and J. S. Boyle, 1997: Climatology and interannual variation of the East Asian winter monsoon: Results from the 1979–95 NCEP/NCAR reanalysis. Mon. Wea. Rev., 125, 26052619, https://doi.org/10.1175/1520-0493(1997)125<2605:CAIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, L., S. Y. S. Wang, and J. Meyer, 2017: Interdecadal climate variations controlling the water level of Lake Qinghai over the Tibetan Plateau. J. Hydrometeor., 18, 30133025, https://doi.org/10.1175/JHM-D-17-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, L., J. Jin, X. Liu, L. Tian, and Q. Zhang, 2018: Simulations of the impact of lakes on local and regional climate over the Tibetan Plateau. Atmos.–Ocean, 56, 230239, https://doi.org/10.1080/07055900.2017.1401524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, J., H.-L. Ren, W. Li, and L. Wang, 2016: Interdecadal variations in the relationship between the winter North Atlantic Oscillation and temperature in south-central China. J. Climate, 29, 74777493, https://doi.org/10.1175/JCLI-D-15-0873.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 271 180 0
PDF Downloads 374 307 0

Modulation of the Kara Sea Ice Variation on the Ice Freeze-Up Time in Lake Qinghai

View More View Less
  • 1 Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
  • | 2 Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, Joint Laboratory of Climate and Environment Change, Chengdu University of Information Technology, Chengdu, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University for Information Science and Technology, Nanjing, China
  • | 3 Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
  • | 4 Digital Earth Laboratory, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China
Restricted access

Abstract

Lake ice phenology, as an indicator for climate variability and change, exerts a great influence on regional climate and hydrometeorology. In this study, the changing characteristics of lake ice phenology at Lake Qinghai (LQH) are investigated using retrieved historical datasets during 1979–2016. The results show that the variation of the lake freeze-up date over LQH is characterized by a strong interannual variability. Further analysis has revealed that November sea ice concentration (SIC) variation in the Kara Sea can exert a great impact on the freeze-up date at LQH. During the low sea ice years, the open sea serves as a strong diabatic heating source, largely contributing to the enhanced Arctic Eliassen–Palmer flux, which then results in the deceleration of zonal wind in the middle and high latitudes. In addition to this, accompanied with the decreasing Kara SIC, the enhanced stationary Rossby wave flux propagating along the high-latitude regions may further exert remarkable influences in deepening the East Asian trough, which provides a favorable atmospheric circulation pattern for cold air intrusion from the Arctic and Siberian regions to mainland China. The decreased surface air temperature would thus advance the freezing date over LQH. Furthermore, the close relationship between atmospheric circulation anomalies and Kara SIC variations is validated by a large ensemble of simulations from the Community Earth System Model, and the atmospheric circulation patterns induced by the SIC anomalies are reproduced to some extent. Therefore, the November Kara Sea ice anomaly might be an important predictor for the variation in the freeze-up date at LQH.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chen Huopo, chenhuopo@mail.iap.ac.cn

Abstract

Lake ice phenology, as an indicator for climate variability and change, exerts a great influence on regional climate and hydrometeorology. In this study, the changing characteristics of lake ice phenology at Lake Qinghai (LQH) are investigated using retrieved historical datasets during 1979–2016. The results show that the variation of the lake freeze-up date over LQH is characterized by a strong interannual variability. Further analysis has revealed that November sea ice concentration (SIC) variation in the Kara Sea can exert a great impact on the freeze-up date at LQH. During the low sea ice years, the open sea serves as a strong diabatic heating source, largely contributing to the enhanced Arctic Eliassen–Palmer flux, which then results in the deceleration of zonal wind in the middle and high latitudes. In addition to this, accompanied with the decreasing Kara SIC, the enhanced stationary Rossby wave flux propagating along the high-latitude regions may further exert remarkable influences in deepening the East Asian trough, which provides a favorable atmospheric circulation pattern for cold air intrusion from the Arctic and Siberian regions to mainland China. The decreased surface air temperature would thus advance the freezing date over LQH. Furthermore, the close relationship between atmospheric circulation anomalies and Kara SIC variations is validated by a large ensemble of simulations from the Community Earth System Model, and the atmospheric circulation patterns induced by the SIC anomalies are reproduced to some extent. Therefore, the November Kara Sea ice anomaly might be an important predictor for the variation in the freeze-up date at LQH.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chen Huopo, chenhuopo@mail.iap.ac.cn
Save