• Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55, 477493, https://doi.org/10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, G., M. J. Reeder, and C. Jakob, 2011: A global climatology of atmospheric fronts. Geophys. Res. Lett., 38, L04809, https://doi.org/10.1029/2010GL046451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., R. J. Small, F. O. Bryan, and R. A. Tomas, 2017: Scale dependence of midlatitude air–sea interaction. J. Climate, 30, 82078221, https://doi.org/10.1175/JCLI-D-17-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., L. Terray, J. W. Hurrell, and C. Deser, 2004: North Atlantic winter climate regimes: Spatial asymmetry, stationarity with time, and oceanic forcing. J. Climate, 17, 10551068, https://doi.org/10.1175/1520-0442(2004)017<1055:NAWCRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L., C. Jakob, G. Berry, and N. Nicholls, 2012: Relating global precipitation to atmospheric fronts. Geophys. Res. Lett., 39, L10805, https://doi.org/10.1029/2012GL051736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., and D. W. Thompson, 2004: North Atlantic atmosphere–ocean interaction on intraseasonal time scales. J. Climate, 17, 16171621, https://doi.org/10.1175/1520-0442(2004)017<1617:NAAIOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., and C. Cagnazzo, 2014: On the misinterpretation of the North Atlantic Oscillation in CMIP5 models. Climate Dyn., 43, 14971511, https://doi.org/10.1007/s00382-013-1970-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. S. Timlin, 1997: Atmosphere–ocean interaction on weekly timescales in the North Atlantic and Pacific. J. Climate, 10, 393408, https://doi.org/10.1175/1520-0442(1997)010<0393:AOIOWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feliks, Y., M. Ghil, and E. Simonnet, 2004: Low-frequency variability in the midlatitude atmosphere induced by an oceanic thermal front. J. Atmos. Sci., 61, 961981, https://doi.org/10.1175/1520-0469(2004)061<0961:LVITMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feliks, Y., M. Ghil, and E. Simonnet, 2007: Low-frequency variability in the midlatitude baroclinic atmosphere induced by an oceanic thermal front. J. Atmos. Sci., 64, 97116, https://doi.org/10.1175/JAS3780.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models, Part II: Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289305, https://doi.org/10.3402/tellusa.v29i4.11362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., P. Müller, and E. Zorita, 1997: A simple model of the decadal response of the ocean to stochastic wind forcing. J. Phys. Oceanogr., 27, 15331546, https://doi.org/10.1175/1520-0485(1997)027<1533:ASMOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayes, S. P., M. J. McPhaden, and J. M. Wallace, 1989: The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Weekly to monthly variability. J. Climate, 2, 15001506, https://doi.org/10.1175/1520-0442(1989)002<1500:TIOSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hewitt, H. T., and Coauthors, 2017: Will high-resolution global ocean models benefit coupled predictions on short-range to climate timescales? Ocean Modell., 120, 120136, https://doi.org/10.1016/j.ocemod.2017.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hewson, T. D., 1998: Objective fronts. Meteor. Appl., 5, 3765, https://doi.org/10.1017/S1350482798000553.

  • Hirata, H., R. Kawamura, M. K. Yoshioka, M. Nonaka, and K. Tsuboki, 2019: Key role of the Kuroshio current in the formation of frontal structure of an extratropical cyclone associated with heavy precipitation. J. Geophys. Res. Atmos., 124, 61436156, https://doi.org/10.1029/2018JD029578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobashi, F., S. P. Xie, N. Iwasaka, and T. T. Sakamoto, 2008: Deep atmospheric response to the North Pacific oceanic subtropical front in spring. J. Climate, 21, 59605975, https://doi.org/10.1175/2008JCLI2311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, Y. O., A. Camacho, C. Martinez, and H. Seo, 2018: North Atlantic winter eddy-driven jet and atmospheric blocking variability in the Community Earth System Model version 1 Large Ensemble simulations. Climate Dyn., 51, 32753289, https://doi.org/10.1007/S00382-018-4078-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, R. W., T. J. Woollings, B. J. Hoskins, K. D. Williams, C. H. O’Reilly, and G. Masato, 2018: Impact of Gulf Stream SST biases on the global atmospheric circulation. Climate Dyn., 51, 33693387, https://doi.org/10.1007/s00382-018-4083-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. A. Barnes, 2015: Extreme moisture transport into the Arctic linked to Rossby wave breaking. J. Geophys. Res. Atmos., 120, 37743788, https://doi.org/10.1002/2014JD022796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madonna, E., C. Li, C. M. Grams, and T. Woollings, 2017: The link between eddy-driven jet variability and weather regimes in the North Atlantic–European sector. Quart. J. Roy. Meteor. Soc., 143, 29602972, https://doi.org/10.1002/qj.3155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, R., H. Nakamura, T. Miyasaka, K. Nishii, and Y. Tanimoto, 2015: Separation of climatological imprints of the Kuroshio Extension and Oyashio fronts on the wintertime atmospheric boundary layer: Their sensitivity to SST resolution prescribed for atmospheric reanalysis. J. Climate, 28, 17641787, https://doi.org/10.1175/JCLI-D-14-00314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, https://doi.org/10.1038/nature06690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minobe, S., M. Miyashita, A. Kuwano-Yoshida, H. Tokinaga, and S.-P. Xie, 2010: Atmospheric response to the Gulf Stream: Seasonal variations. J. Climate, 23, 36993719, https://doi.org/10.1175/2010JCLI3359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nkwinkwa Njouodo, A. S., S. Koseki, N. Keenlyside, and M. Rouault, 2018: Atmospheric signature of the Agulhas Current. Geophys. Res. Lett., 45, 51855193, https://doi.org/10.1029/2018GL077042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., T. Haack, D. B. Chelton, and E. Skyllingstad, 2017: The Gulf Stream convergence zone in the time-mean winds. J. Atmos. Sci., 74, 23832412, https://doi.org/10.1175/JAS-D-16-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parfitt, R., 2014: Extreme air–sea interactions over the Gulf Stream. Ph.D. dissertation, Imperial College London, 189 pp.

  • Parfitt, R., and A. Czaja, 2016: On the contribution of synoptic transients to the mean atmospheric state in the Gulf Stream region. Quart. J. Roy. Meteor. Soc., 142, 15541561, https://doi.org/10.1002/qj.2689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parfitt, R., and H. Seo, 2018: A new framework for near-surface wind convergence over the Kuroshio Extension and Gulf Stream in wintertime: The role of atmospheric fronts. Geophys. Res. Lett., 45, 99099918, https://doi.org/10.1029/2018GL080135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parfitt, R., A. Czaja, S. Minobe, and A. Kuwano-Yoshida, 2016: The atmospheric frontal response to SST perturbations in the Gulf Stream region. Geophys. Res. Lett., 43, 22992306, https://doi.org/10.1002/2016GL067723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parfitt, R., A. Czaja, and Y. O. Kwon, 2017a: The impact of SST resolution change in the ERA-Interim reanalysis on wintertime Gulf Stream frontal air–sea interaction. Geophys. Res. Lett., 44, 32463254, https://doi.org/10.1002/2017GL073028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parfitt, R., A. Czaja, and H. Seo, 2017b: A simple diagnostic for the detection of atmospheric fronts. Geophys. Res. Lett., 44, 43514358, https://doi.org/10.1002/2017GL073662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santos, J. A., T. Woollings, and J. G. Pinto, 2013: Are the winters 2010 and 2012 archetypes exhibiting extreme opposite behavior of the North Atlantic jet stream? Mon. Wea. Rev., 141, 36263640, https://doi.org/10.1175/MWR-D-13-00024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schemm, S., I. Rudeva, and I. Simmonds, 2015: Extratropical fronts in the lower troposphere—Global perspectives obtained from two automated methods. Quart. J. Roy. Meteor. Soc., 141, 16861698, https://doi.org/10.1002/qj.2471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., D. S. Battisti, J. Yin, N. Gordon, N. Naik, A. C. Clement, and M. A. Cane, 2002: Is the Gulf Stream responsible for Europe’s mild winters? Quart. J. Roy. Meteor. Soc., 128, 25632586, https://doi.org/10.1256/qj.01.128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheldon, L., A. Czaja, B. Vannière, C. Morcrette, B. Sohet, M. Casado, and D. Smith, 2017: A ‘warm path’ for Gulf Stream–troposphere interactions. Tellus, 69A, 1299397, https://doi.org/10.1080/16000870.2017.1299397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siqueira, L., and B. P. Kirtman, 2016: Atlantic near-term climate variability and the role of a resolved Gulf Stream. Geophys. Res. Lett., 43, 39643972, https://doi.org/10.1002/2016GL068694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., R. Msadek, Y. O. Kwon, J. F. Booth, and C. Zarzycki, 2018: Atmosphere surface storm track response to resolved ocean mesoscale in two sets of global climate model experiments. Climate Dyn., 52, 20672089, https://doi.org/10.1007/S00382-018-4237-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smirnov, D., M. Newman, M. A. Alexander, Y. O. Kwon, and C. Frankignoul, 2015: Investigating the local atmospheric response to a realistic shift in the Oyashio sea surface temperature front. J. Climate, 28, 11261147, https://doi.org/10.1175/JCLI-D-14-00285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solman, S. A., and I. Orlanski, 2010: Subpolar high anomaly preconditioning precipitation over South America. J. Atmos. Sci., 67, 15261542, https://doi.org/10.1175/2009JAS3309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solman, S. A., and I. Orlanski, 2014: Poleward shift and change of frontal activity in the Southern Hemisphere over the last 40 years. J. Atmos. Sci., 71, 539552, https://doi.org/10.1175/JAS-D-13-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., Y. Tanimoto, S. P. Xie, T. Sampe, H. Tomita, and H. Ichikawa, 2009: Ocean frontal effects on the vertical development of clouds over the western North Pacific: In situ and satellite observations. J. Climate, 22, 42414260, https://doi.org/10.1175/2009JCLI2763.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vannière, B., A. Czaja, H. Dacre, and T. Woollings, 2017: A “cold path” for the Gulf Stream–troposphere connection. J. Climate, 30, 13631379, https://doi.org/10.1175/JCLI-D-15-0749.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., 1990: Multiple weather regimes over the North Atlantic: Analysis of precursors and successors. Mon. Wea. Rev., 118, 20562081, https://doi.org/10.1175/1520-0493(1990)118<2056:MWROTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wai, M. M. K., and S. A. Stage, 1989: Dynamical analyses of marine atmospheric boundary layer structure near the Gulf Stream oceanic front. Quart. J. Roy. Meteor. Soc., 115, 2944, https://doi.org/10.1002/qj.49711548503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., T. P. Mitchell, and C. Deser, 1989: The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2, 14921499, https://doi.org/10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, S. M., D. W. Thompson, and L. M. Ciasto, 2016: On the observed relationships between variability in Gulf Stream sea surface temperatures and the atmospheric circulation over the North Atlantic. J. Climate, 29, 37193730, https://doi.org/10.1175/JCLI-D-15-0820.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., A. Hannachi, and B. Hoskins, 2010: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856868, https://doi.org/10.1002/qj.625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., C. Czuchnicki, and C. Franzke, 2014: Twentieth century North Atlantic jet variability. Quart. J. Roy. Meteor. Soc., 140, 783791, https://doi.org/10.1002/qj.2197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., and Coauthors, 2018: Daily to decadal modulation of jet variability. J. Climate, 31, 12971314, https://doi.org/10.1175/JCLI-D-17-0286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 33 33 11
Full Text Views 8 8 5
PDF Downloads 5 5 3

The Modulation of Gulf Stream Influence on the Troposphere by the Eddy-Driven Jet

View More View Less
  • 1 Florida State University, Tallahassee, Florida, and Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • 2 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
© Get Permissions
Restricted access

Abstract

This study suggests that the Gulf Stream influence on the wintertime North Atlantic troposphere is most pronounced when the eddy-driven jet (EDJ) is farthest south and better collocated with the Gulf Stream. Using the reanalysis dataset NCEP-CFSR for December–February 1979–2009, the daily EDJ latitude is separated into three regimes (northern, central, and southern). It is found that the average trajectory of atmospheric fronts covaries with EDJ latitude. In the southern EDJ regime (~19% of the time), the frequency of near-surface atmospheric fronts that pass across the Gulf Stream is maximized. Analysis suggests that this leads to significant strengthening in near-surface atmospheric frontal convergence resulting from strong air–sea sensible heat flux gradients (due to strong temperature gradients in the atmosphere and ocean). In recent studies, it was shown that the pronounced band of time-mean near-surface wind convergence across the Gulf Stream is set by atmospheric fronts. Here, it is shown that an even smaller subset of atmospheric fronts—those associated with a southern EDJ—primarily sets the time mean, due to enhanced Gulf Stream air–sea interaction. Furthermore, statistically significant anomalies in vertical velocity extending well above the boundary layer are identified in association with changes in EDJ latitude. These anomalies are particularly strong for a southern EDJ and are spatially consistent with increases in near-surface atmospheric frontal convergence over the Gulf Stream. These results imply that much of the Gulf Stream influence on the time-mean atmosphere is modulated on synoptic time scales, and enhanced when the EDJ is farthest south.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0294.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rhys Parfitt, rparfitt@fsu.edu

Abstract

This study suggests that the Gulf Stream influence on the wintertime North Atlantic troposphere is most pronounced when the eddy-driven jet (EDJ) is farthest south and better collocated with the Gulf Stream. Using the reanalysis dataset NCEP-CFSR for December–February 1979–2009, the daily EDJ latitude is separated into three regimes (northern, central, and southern). It is found that the average trajectory of atmospheric fronts covaries with EDJ latitude. In the southern EDJ regime (~19% of the time), the frequency of near-surface atmospheric fronts that pass across the Gulf Stream is maximized. Analysis suggests that this leads to significant strengthening in near-surface atmospheric frontal convergence resulting from strong air–sea sensible heat flux gradients (due to strong temperature gradients in the atmosphere and ocean). In recent studies, it was shown that the pronounced band of time-mean near-surface wind convergence across the Gulf Stream is set by atmospheric fronts. Here, it is shown that an even smaller subset of atmospheric fronts—those associated with a southern EDJ—primarily sets the time mean, due to enhanced Gulf Stream air–sea interaction. Furthermore, statistically significant anomalies in vertical velocity extending well above the boundary layer are identified in association with changes in EDJ latitude. These anomalies are particularly strong for a southern EDJ and are spatially consistent with increases in near-surface atmospheric frontal convergence over the Gulf Stream. These results imply that much of the Gulf Stream influence on the time-mean atmosphere is modulated on synoptic time scales, and enhanced when the EDJ is farthest south.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0294.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rhys Parfitt, rparfitt@fsu.edu

Supplementary Materials

    • Supplemental Materials (PDF 266.55 KB)
Save