• Armour, K., C. Bitz, and G. Roe, 2013: Time-varying climate sensitivity from regional feedbacks. J. Climate, 26, 45184534, https://doi.org/10.1175/JCLI-D-12-00544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armour, K., J. Marshall, J. Scott, A. Donohoe, and E. Newsom, 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci., 9, 549554, https://doi.org/10.1038/ngeo2731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armour, K., N. Siler, A. Donohoe, and G. Roe, 2019: Meridional atmospheric heat transport constrained by energetics and mediated by large-scale diffusion. J. Climate, 32, 36553680, https://doi.org/10.1175/JCLI-D-18-0563.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1964: Atlantic air-sea interaction. Advances in Geophysics, Vol. 10, Academic Press, 182, https://doi.org/10.1016/S0065-2687(08)60005-9.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and Coauthors, 2007a: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—Part 1: Experiments and large-scale features. Climate Past, 3, 261277, https://doi.org/10.5194/CP-3-261-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and Coauthors, 2007b: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—Part 2: Feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Climate Past, 3, 279296, https://doi.org/10.5194/CP-3-279-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chengfei, H., Z. Liuand, and A. Hu, 2019: The transient response of atmospheric and oceanic heat transports to anthropogenic warming. Nat. Climate Change, 9, 222226, https://doi.org/10.1038/S41558-018-0387-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and C. Chen, 2010: Depth of convection and the weakening of tropical circulation in global warming. J. Climate, 23, 30193030, https://doi.org/10.1175/2010JCLI3383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., T.-C. Wu, and P.-H. Tan, 2013: Changes in gross moist stability in the tropics under global warming. Climate Dyn., 41, 24812496, https://doi.org/10.1007/s00382-013-1703-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., and D. Battisti, 2009: Causes of reduced North Atlantic storm activity in a CAM3 simulation of the Last Glacial Maximum. J. Climate, 22, 47934808, https://doi.org/10.1175/2009JCLI2776.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., and D. Battisti, 2011: Atmospheric and surface contributions to planetary albedo. J. Climate, 24, 44024418, https://doi.org/10.1175/2011JCLI3946.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., and D. Battisti, 2012: What determines meridional heat transport in climate models? J. Climate, 25, 38323850, https://doi.org/10.1175/JCLI-D-11-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, and D. McGee, 2013: The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the Last Glacial Maximum. J. Climate, 26, 35973618, https://doi.org/10.1175/JCLI-D-12-00467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, K. Armour, and D. McGee, 2014: The interannual variability of tropical precipitation and interhemispheric energy transport. J. Climate, 27, 33773392, https://doi.org/10.1175/JCLI-D-13-00499.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E., 1949: Long waves and cyclone waves. Tellus, 1, 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Enderton, D., and J. Marshall, 2009: Explorations of atmosphere–ocean–ice climates on an aquaplanet and their meridional energy transports. J. Atmos. Sci., 66, 15931611, https://doi.org/10.1175/2008JAS2680.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farneti, R., and G. Vallis, 2013: Meridional energy transport in the coupled atmosphere ocean system: Compensation and partitioning. J. Climate, 26, 71517166, https://doi.org/10.1175/JCLI-D-12-00133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., and K. E. Trenberth, 2008a: The annual cycle of the energy budget: Part 1. Global mean and land–ocean exchanges. J. Climate, 21, 22972312, https://doi.org/10.1175/2007JCLI1935.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., and K. E. Trenberth, 2008b: The annual cycle of the energy budget: Part 2. Meridional structures and poleward transports. J. Climate, 21, 23132325, https://doi.org/10.1175/2007JCLI1936.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldl, N., and G. Roe, 2013: The nonlinear and nonlocal nature of climate feedbacks. J. Climate, 26, 82898304, https://doi.org/10.1175/JCLI-D-12-00631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and Y.-T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25, 720733, https://doi.org/10.1175/JCLI-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Climate, 63, 25482566, https://doi.org/10.1175/JAS3753.1.

    • Search Google Scholar
    • Export Citation
  • Held, I., 2001: The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci., 58, 943948, https://doi.org/10.1175/1520-0469(2001)058<0943:TPOTPE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I., and A. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533, https://doi.org/10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I., and M. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I., and B. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Adv. Model. Earth Syst., 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Hill, S., Y. Ming, and I. Held, 2015: Mechanisms of forced tropical meridional energy flux change. J. Climate, 28, 17251742, https://doi.org/10.1175/JCLI-D-14-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, W., M. Palmer, and D. Monselesan, 2016: An energy conservation analysis of ocean drift in the CMIP5 global coupled models. J. Climate, 29, 16391653, https://doi.org/10.1175/JCLI-D-15-0477.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., and C. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232, https://doi.org/10.1007/s00382-003-0332-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hori, M., and H. Ueda, 2006: Impact of global warming on the East Asian winter monsoon as revealed by nine coupled atmosphere-ocean GCMs. Geophys. Res. Lett., 33, L03713, https://doi.org/10.1029/2005GL024961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., and M. Zhang, 2014: The implication of radiative forcing and feedback for meridional energy transport. Geophys. Res. Lett., 41, 16651672, https://doi.org/10.1002/2013GL059079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurley, J., and W. Boos, 2015: A global climatology of monsoon low-pressure systems. Quart. J. Roy. Meteor. Soc., 141, 10491064, https://doi.org/10.1002/qj.2447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y., and D. Frierson, 2010: Increasing atmospheric poleward energy transport with global warming. Geophys. Res. Lett., 37, L24807, https://doi.org/10.1029/2010GL045440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y., D. Frierson, and J. Kay, 2011: Coupling between Arctic feedbacks and changes in poleward energy transport. Geophys. Res. Lett., 38, L17704, https://doi.org/10.1029/2011GL048546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G., J. Lyman, and N. Loeb, 2016: Improving estimates of Earth’s energy imbalance. Nat. Climate Change, 6, 639640, https://doi.org/10.1038/nclimate3043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaspi, Y., and T. Schneider, 2013: The role of stationary eddies in shaping midlatitude storm tracks. J. Atmos. Sci., 70, 25962613, https://doi.org/10.1175/JAS-D-12-082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., and D. Battisti, 2008: Reduced Atlantic storminess during Last Glacial Maximum: Evidence from a coupled climate model. J. Climate, 21, 35613579, https://doi.org/10.1175/2007JCLI2166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, M., A. Czaja, R. Graversen, and R. Tailleux, 2018: Poleward energy transport: Is the standard definition physically relevant at all time scales? Climate Dyn., 50, 17851797, https://doi.org/10.1007/s00382-017-3722-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., D. Battisti, and A. Donohoe, 2018: Tropical precipitation and cross-equatorial ocean heat transport during the mid-Holocene. J. Climate, 30, 35293547, https://doi.org/10.1175/JCLI-D-16-0502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., H. Yang, C. He, and Y. Zhao, 2016: A theory for Bjerknes compensation: The role of climate feedback. J. Climate, 29, 191–208, https://doi.org/10.1175/JCLI-D-15-0227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., C. He, and F. Lu, 2018: Local and remote responses of atmospheric and oceanic heat transports to climate forcing: Compensation versus collaboration. J. Climate, 31, 64456460, https://doi.org/10.1175/JCLI-D-17-0675.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, https://doi.org/10.1175/2008JCLI2637.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E., 1953: A multiple index notation for describing atmospheric transport processes. AFCRL Rep., 35–53.

  • Lucarini, V., and F. Ragone, 2011: Energetics of IPCC4 AR4 climate models: Energy balance and meridional enthalpy transports. Rev. Geophys., 49, RG1001, https://doi.org/10.1029/2009RG000323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., S. Xie, and Y. Kosaka, 2012: Mechanisms for tropical tropospheric circulation change in response to global warming. J. Climate, 25, 29792994, https://doi.org/10.1175/JCLI-D-11-00048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Donohoe, D. Ferreira, and D. McGee, 2014: The ocean’s role in setting the mean position of the inter-tropical convergence zone. Climate Dyn., 42, 19671979, https://doi.org/10.1016/j.epsl.2013.12.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., J. Scott, K. Armour, J. Campin, M. Kelley, and A. Romanou, 2015: The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Climate Dyn., 44, 22872299, https://doi.org/10.1007/s00382-014-2308-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masuda, K., 1988: Meridional heat transport by the atmosphere and ocean: Analysis of FGGE data. Tellus, 40A, 285302, https://doi.org/10.1111/j.1600-0870.1988.tb00348.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oort, A., 1971: The observed annual cycle in the meridional transport of atmospheric energy. J. Atmos. Sci., 28, 325339, https://doi.org/10.1175/1520-0469(1971)028<0325:TOACIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oort, A., and T. Vonder Haar, 1976: On the observed annual cycle in the ocean–atmosphere heat balance over the Northern Hemisphere. J. Phys. Oceanogr., 6, 781800, https://doi.org/10.1175/1520-0485(1976)006<0781:OTOACI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peixoto, J., and A. Oort, 1992: Physics of Climate. AIP Press, 160 pp.

  • Pierrehumbert, R., 1995: Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci., 52, 17841806, https://doi.org/10.1175/1520-0469(1995)052<1784:TRFATL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Priestley, C., 1948: Heat transport and zonal stress between latitudes. Quart. J. Roy. Meteor. Soc., 75, 2840, https://doi.org/10.1002/qj.49707532307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rencurrel, M. C., and B. E. J. Rose, 2018: Exploring the climatic response to wide variations in ocean heat transport on an aquaplanet. J. Climate, 31, 62996318, https://doi.org/10.1175/JCLI-D-17-0856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rencurrel, M. C., and B. E. J. Rose, 2020: The efficiency of the Hadley cell response to wide variations in ocean heat transport. J. Climate, 33, 16431658, https://doi.org/10.1175/JCLI-D-19-0334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, G., N. Feldl, K. Armour, Y.-T. Hwang, and D. Frierson, 2015: The remote impacts of climate feedbacks on regional climate predictability. Nat. Geosci., 8, 135139, https://doi.org/10.1038/ngeo2346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, https://doi.org/10.1038/nature13636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, P., 1978: Constraints on dynamical transports of energy on a spherical planet. Dyn. Atmos. Oceans, 2, 123139, https://doi.org/10.1016/0377-0265(78)90006-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K., R. Stouffer, and G. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: Using atmospheric budgets as a constraint on surface fluxes. J. Climate, 10, 27962809, https://doi.org/10.1175/1520-0442(1997)010<2796:UABAAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443, https://doi.org/10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2003a: Co-variability of components of poleward atmospheric energy transports on seasonal and interannual timescales. J. Climate, 16, 36913705, https://doi.org/10.1175/1520-0442(2003)016<3691:COCOPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2003b: Seamless poleward atmospheric energy transports and implications for the Hadley circulation. J. Climate, 16, 37063722, https://doi.org/10.1175/1520-0442(2003)016<3706:SPAETA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2004: The flow of energy through the Earth’s climate system. Quart. J. Roy. Meteor. Soc., 130, 26772701, https://doi.org/10.1256/qj.04.83.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the southern oceans. J. Climate, 23, 440454, https://doi.org/10.1175/2009JCLI3152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G., and R. Farneti, 2009: Meridional energy transport in the coupled atmosphere ocean system: Scaling and numerical experiments. Quart. J. Roy. Meteor. Soc., 135, 16431660, https://doi.org/10.1002/qj.498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vellinga, M., and P. Wu, 2008: Relations between northward ocean and atmosphere energy transports in a coupled climate model. J. Climate, 21, 561575, https://doi.org/10.1175/2007JCLI1754.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vonder Haar, T., and A. Oort, 1973: New estimate of annual poleward energy transport by Northern Hemisphere oceans. J. Phys. Oceanogr., 3, 169172, https://doi.org/10.1175/1520-0485(1973)003<0169:NEOAPE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B., B. Barkstrom, E. Harrison, R. Lee, G. Smith, and J. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y., M. Ting, R. Seager, H. Huang, and M. Cane, 2011: Changes in storm tracks and energy transports in a warmer climate simulated by the GFDL CM2.1 model. Climate Dyn., 37, 5372, https://doi.org/10.1007/s00382-010-0776-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, Z., M. Zhao, Y. Ming, W. Yu, and S. Kang, 2018: Contrasting impacts of radiative forcing in the Southern Ocean versus southern tropics on ITCZ position and energy transport in one GFDL climate model. J. Climate, 31, 56095628, https://doi.org/10.1175/JCLI-D-17-0566.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., and H. Dai, 2015: Effect of wind forcing on the meridional heat transport in a coupled climate model: Equilibrium response. Climate Dyn., 45, 14511470, https://doi.org/10.1007/s00382-014-2393-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., Q. Li, K. Wang, Y. Sun, and D. Sun, 2015a: Decomposing the meridional heat transport in the climate system. Climate Dyn., 44, 27512768, https://doi.org/10.1007/s00382-014-2380-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., Y. Zhao, Q. Li, and Z. Liu, 2015b: Heat transport compensation in atmosphere and ocean over the past 22,000 years. Nat. Sci. Rep., 5, 16661, https://doi.org/10.1038/srep16661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., Y. Zhao, and Z. Liu, 2016: Understanding Bjerknes compensation in atmosphere and ocean heat transports using a coupled box model. J. Climate, 29, 21452160, https://doi.org/10.1175/JCLI-D-15-0281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M., and D. Hartmann, 2012: Climate feedbacks, and their implications for poleward energy flux changes in a warming climate. J. Climate, 25, 608624, https://doi.org/10.1175/JCLI-D-11-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 38 38 19
Full Text Views 13 13 9
PDF Downloads 12 12 10

The Partitioning of Meridional Heat Transport from the Last Glacial Maximum to CO2 Quadrupling in Coupled Climate Models

View More View Less
  • 1 Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington
  • 2 School of Oceanography and Department of Atmospheric Sciences, University of Washington, Seattle, Washington
  • 3 Department of Earth and Space Sciences, University of Washington, Seattle, Washington
  • 4 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

Meridional heat transport (MHT) is analyzed in ensembles of coupled climate models simulating climate states ranging from the Last Glacial Maximum (LGM) to quadrupled CO2. MHT is partitioned here into atmospheric (AHT) and implied oceanic (OHT) heat transports. In turn, AHT is partitioned into dry and moist energy transport by the meridional overturning circulation (MOC), transient eddy energy transport (TE), and stationary eddy energy transport (SE) using only monthly averaged model output that is typically archived. In all climate models examined, the maximum total MHT (AHT + OHT) is nearly climate-state invariant, except for a modest (4%, 0.3 PW) enhancement of MHT in the Northern Hemisphere (NH) during the LGM. However, the partitioning of MHT depends markedly on the climate state, and the changes in partitioning differ considerably among different climate models. In response to CO2 quadrupling, poleward implied OHT decreases, while AHT increases by a nearly compensating amount. The increase in annual-mean AHT is a smooth function of latitude but is due to a spatially inhomogeneous blend of changes in SE and TE that vary by season. During the LGM, the increase in wintertime SE transport in the NH midlatitudes exceeds the decrease in TE resulting in enhanced total AHT. Total AHT changes in the Southern Hemisphere (SH) are not significant. These results suggest that the net top-of-atmosphere radiative constraints on total MHT are relatively invariant to climate forcing due to nearly compensating changes in absorbed solar radiation and outgoing longwave radiation. However, the partitioning of MHT depends on detailed regional and seasonal factors.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 21 April 2020 to replace Figs. 2 and 410, which were processed at a lower resolution when originally published.

Corresponding author: Aaron Donohoe, adonohoe@u.washington.edu

Abstract

Meridional heat transport (MHT) is analyzed in ensembles of coupled climate models simulating climate states ranging from the Last Glacial Maximum (LGM) to quadrupled CO2. MHT is partitioned here into atmospheric (AHT) and implied oceanic (OHT) heat transports. In turn, AHT is partitioned into dry and moist energy transport by the meridional overturning circulation (MOC), transient eddy energy transport (TE), and stationary eddy energy transport (SE) using only monthly averaged model output that is typically archived. In all climate models examined, the maximum total MHT (AHT + OHT) is nearly climate-state invariant, except for a modest (4%, 0.3 PW) enhancement of MHT in the Northern Hemisphere (NH) during the LGM. However, the partitioning of MHT depends markedly on the climate state, and the changes in partitioning differ considerably among different climate models. In response to CO2 quadrupling, poleward implied OHT decreases, while AHT increases by a nearly compensating amount. The increase in annual-mean AHT is a smooth function of latitude but is due to a spatially inhomogeneous blend of changes in SE and TE that vary by season. During the LGM, the increase in wintertime SE transport in the NH midlatitudes exceeds the decrease in TE resulting in enhanced total AHT. Total AHT changes in the Southern Hemisphere (SH) are not significant. These results suggest that the net top-of-atmosphere radiative constraints on total MHT are relatively invariant to climate forcing due to nearly compensating changes in absorbed solar radiation and outgoing longwave radiation. However, the partitioning of MHT depends on detailed regional and seasonal factors.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 21 April 2020 to replace Figs. 2 and 410, which were processed at a lower resolution when originally published.

Corresponding author: Aaron Donohoe, adonohoe@u.washington.edu
Save