• Bindoff, N. L., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 867–952, https://doi.org/10.1017/CBO9781107415324.022.

    • Crossref
    • Export Citation
  • Bintanja, R., and E. C. van der Linden, 2013: The changing seasonal climate in the Arctic. Sci. Rep., 3, 1556, https://doi.org/10.1038/srep01556.

  • Bintanja, R., R. G. Graversen, and W. Hazeleger, 2011: Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space. Nat. Geosci., 4, 758761, https://doi.org/10.1038/ngeo1285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breider, T. J., and Coauthors, 2017: Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980. J. Geophys. Res. Atmos., 122, 35733594, https://doi.org/10.1002/2016JD025321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., 2005: Dynamical amplification of polar warming. Geophys. Res. Lett., 32, L22710, https://doi.org/10.1029/2005GL024481.

  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Cao, Y., S. Liang, X. Chen, T. He, D. Wang, and X. Cheng, 2017: Enhanced wintertime greenhouse effect reinforcing Arctic amplification and initial sea-ice melting. Sci. Rep., 7, 8462, https://doi.org/10.1038/s41598-017-08545-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castruccio, F. S., Y. Ruprich-Robert, S. G. Yeager, G. Danabasoglu, R. Msadek, and T. L. Delworth, 2019: Modulation of Arctic sea ice loss by atmospheric teleconnections from Atlantic multidecadal variability. J. Climate, 32, 14191441, https://doi.org/10.1175/JCLI-D-18-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemke, R., and L. M. Polvani, 2020: Linking midlatitudes eddy heat flux trends and polar amplification. npj Climate Atmos. Sci., 3, 8, https://doi.org/10.1038/s41612-020-0111-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., T. Mochizuki, A. Timmermann, M. Kimoto, and M. Watanabe, 2016: Potential tropical Atlantic impacts on Pacific decadal climate trends. Geophys. Res. Lett., 43, 71437151, https://doi.org/10.1002/2016GL069544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, C. E., and P. Räisänen, 2011: Origin of the Arctic warming in climate models. Geophys. Res. Lett., 38, L21704, https://doi.org/10.1029/2011GL049816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chylek, P., C. K. Folland, G. Lesins, M. K. Dubey, and M. Wang, 2009: Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation. Geophys. Res. Lett., 36, L14801, https://doi.org/10.1029/2009GL038777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cionni, I., and Coauthors, 2011: Ozone database in support of CMIP5 simulations: Results and corresponding radiative forcing. Atmos. Chem. Phys., 11, 11 26711 292, https://doi.org/10.5194/acp-11-11267-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coats, S., and K. B. Karnauskas, 2017: Are simulated and observed twentieth century tropical Pacific sea surface temperature trends significant relative to internal variability? Geophys. Res. Lett., 44, 99289937, https://doi.org/10.1002/2017GL074622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., J. von Hardenberg, and S. Corti, 2015: Tropical origin for the impacts of the Atlantic multidecadal variability on the Euro-Atlantic climate. Environ. Res. Lett., 10, 094010, https://doi.org/10.1088/1748-9326/10/9/094010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., B. Wang, J. M. Wallace, and G. Branstator, 2011: Tropical–extratropical teleconnections in boreal summer: Observed interannual variability. J. Climate, 24, 18781896, https://doi.org/10.1175/2011JCLI3621.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., J. M. Wallace, D. S. Battisti, E. J. Steig, A. J. E. Gallant, H.-J. Kim, and L. Geng, 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509, 209212, https://doi.org/10.1038/nature13260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, S., W. Chen, H. F. Graf, Y. Guo, and D. Nath, 2018: Distinct winter patterns of tropical Pacific convection anomaly and the associated extratropical wave trains in the Northern Hemisphere. Climate Dyn., 51, 20032022, https://doi.org/10.1007/s00382-017-3995-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsbury, D., Y. Peings, D. Saint-Martin, H. Douville, and G. Magnusdottir, 2019: The atmospheric response to positive IPV, positive AMV, and their combination in boreal winter. J. Climate, 32, 41934213, https://doi.org/10.1175/JCLI-D-18-0422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferranti, L., F. Molteni, and T. N. Palmer, 1994: Impact of localized tropical and extratropical SST anomalies in ensembles of seasonal GCM integrations. Quart. J. Roy. Meteor. Soc., 120, 16131645, https://doi.org/10.1002/qj.49712052009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flournoy, M. D., S. B. Feldstein, S. Lee, and E. E. Clothiaux, 2016: Exploring the tropically excited Arctic warming mechanism with station data: Links between tropical convection and Arctic downward infrared radiation. J. Atmos. Sci., 73, 11431158, https://doi.org/10.1175/JAS-D-14-0271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freitas, A. C. V., and T. Ambrizzi, 2012: Changes in the austral winter Hadley circulation and the impact on stationary Rossby waves propagation. Adv. Meteor., 2012, 980816, https://doi.org/10.1155/2012/980816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freitas, A. C. V., J. S. Frederiksen, T. J. O’Kane, and T. Ambrizzi, 2017: Simulated austral winter response of the Hadley circulation and stationary Rossby wave propagation to a warming climate. Climate Dyn., 49, 521545, https://doi.org/10.1007/s00382-016-3356-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., M. Vázquez, R. Nieto, and R. M. Trigo, 2015: Atmospheric moisture transport: The bridge between ocean evaporation and Arctic ice melting. Earth Syst. Dyn., 6, 583589, https://doi.org/10.5194/esd-6-583-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, T., S. Feldstein, and S. Lee, 2017: The role of downward infrared radiation in the recent Arctic winter warming trend. J. Climate, 30, 49374949, https://doi.org/10.1175/JCLI-D-16-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goosse, H., and Coauthors, 2018: Quantifying climate feedbacks in polar regions. Nat. Commun., 9, 1919, https://doi.org/10.1038/s41467-018-04173-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goss, M., S. B. Feldstein, and S. Lee, 2016: Stationary wave interference and its relation to tropical convection and Arctic warming. J. Climate, 29, 13691389, https://doi.org/10.1175/JCLI-D-15-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., and M. Wang, 2009: Polar amplification in a coupled climate model with locked albedo. Climate Dyn., 33, 629643, https://doi.org/10.1007/s00382-009-0535-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., and M. Burtu, 2016: Arctic amplification enhanced by latent energy transport of atmospheric planetary waves. Quart. J. Roy. Meteor. Soc., 142, 20462054, https://doi.org/10.1002/qj.2802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., T. Mauritsen, M. Tjernström, E. Källén, and G. Svensson, 2008: Vertical structure of recent Arctic warming. Nature, 451, 5356, https://doi.org/10.1038/nature06502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, E., and Coauthors, 2014: Atmospheric and oceanic climate forcing of the exceptional Greenland ice sheet surface melt in summer 2012. Int. J. Climatol., 34, 10221037, https://doi.org/10.1002/joc.3743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and Coauthors, 2013: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 159–254.

  • Hewitt, H. T., D. Copsey, I. D. Culverwell, C. M. Harris, R. S. R. Hill, A. B. Keen, A. J. McLaren, and E. C. Hunke, 2011: Design and implementation of the infrastructure of HadGEM3: The next-generation Met Office climate modelling system. Geosci. Model Dev., 4, 223253, https://doi.org/10.5194/gmd-4-223-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ineson, S., and A. A. Scaife, 2009: The role of the stratosphere in the European climate response to El Niño. Nat. Geosci., 2, 3236, https://doi.org/10.1038/ngeo381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F., and B. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 3, 307319, https://doi.org/10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kattsov, V. M., and J. E. Walsh, 2000: Twentieth-century trends of Arctic precipitation from observational data and a climate model simulation. J. Climate, 13, 13621370, https://doi.org/10.1175/1520-0442(2000)013<1362:TCTOAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S. P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, https://doi.org/10.1038/nature12534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharski, F., F. S. Syed, A. Burhan, I. Farah, and A. Gohar, 2014: Tropical Atlantic influence on Pacific variability and mean state in the twentieth century in observations and CMIP5. Climate Dyn., 44, 881896, https://doi.org/10.1007/s00382-014-2228-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langen, P. L., and V. A. Alexeev, 2007: Polar amplification as a preferred response in an idealized aquaplanet GCM. Climate Dyn., 29, 305317, https://doi.org/10.1007/s00382-006-0221-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 1994: A modelling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere–ocean system. J. Climate, 7, 11841207, https://doi.org/10.1175/1520-0442(1994)007<1184:AMSOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., 2012: Testing of the tropically excited Arctic warming mechanism (TEAM) with traditional El Niño and La Niña. J. Climate, 25, 40154022, https://doi.org/10.1175/JCLI-D-12-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Gong, S. B. Feldstein, J. A. Screen, and I. Simmonds, 2017: Revisiting the cause of the 1989–2009 Arctic surface warming using the surface energy budget: Downward infrared radiation dominates the surface fluxes. Geophys. Res. Lett., 44, 10 65410 661, https://doi.org/10.1002/2017gl075375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lesins, G., T. J. Duck, and J. R. Drummond, 2012: Surface energy balance framework for Arctic amplification of climate change. J. Climate, 25, 82778288, https://doi.org/10.1175/JCLI-D-11-00711.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., S.-P. Xie, S. T. Gille, and C. Yoo, 2015: Atlantic-induced pan-tropical climate change over the past three decades. Nat. Climate Change, 6, 275279, https://doi.org/10.1038/nclimate2840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahajan, S., R. Zhang, and T. L. Delworth, 2011: Impact of the Atlantic meridional overturning circulation (AMOC) on Arctic surface air temperature and sea ice variability. J. Climate, 24, 65736581, https://doi.org/10.1175/2011JCLI4002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifield, F. F. Jin, and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Climate Change, 4, 888892, https://doi.org/10.1038/nclimate2330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. T. Chung, J. M. Arblaster, M. M. Holland, and C. M. Bitz, 2018: Tropical decadal variability and the rate of Arctic sea ice decrease. Geophys. Res. Lett., 45, 11 32611 333, https://doi.org/10.1029/2018GL079989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niebauer, H. J., 1988: Effects of El Niño–Southern Oscillation and North Pacific weather patterns on interannual variability in the subarctic Bering Sea. J. Geophys. Res., 93, 50515068, https://doi.org/10.1029/JC093iC05p05051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., J. S. Risbey, D. P. Monselesan, I. Horenko, and C. L. Franzke, 2016: On the dynamics of persistent states and their secular trends in the waveguides of the Southern Hemisphere troposphere. Climate Dyn., 46, 35673597, https://doi.org/10.1007/s00382-015-2786-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., C. Deser, A. Hu, A. Timmermann, and S.-P. Xie, 2009: North Pacific climate response to freshwater forcing in the subarctic North Atlantic: Oceanic and atmospheric pathways. J. Climate, 22, 14241445, https://doi.org/10.1175/2008JCLI2511.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., T. Woollings, L. Zanna, and A. Weisheimer, 2018: The impact of tropical precipitation on summertime Euro-Atlantic circulation via a circumglobal wave train. J. Climate, 31, 64816504, https://doi.org/10.1175/JCLI-D-17-0451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., T. Woollings, L. Zanna, and A. Weisheimer, 2019: An interdecadal shift of the extratropical teleconnection from the tropical Pacific during boreal summer. Geophys. Res. Lett., 46, 13 37913 388, https://doi.org/10.1029/2019GL084079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., and G. Magnusdottir, 2014: Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic Ocean. Environ. Res. Lett., 9, 034018, https://doi.org/10.1088/1748-9326/9/3/034018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, https://doi.org/10.1038/ngeo2071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217229, https://doi.org/10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. Folland, L. Alexander, D. Rowell, E. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodionov, S. N., N. A. Bond, and J. E. Overland, 2007: The Aleutian low, storm tracks, and winter climate variability in the Bering Sea. Deep-Sea Res. II, 54, 25602577, https://doi.org/10.1016/j.dsr2.2007.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruprich-Robert, Y., R. Msadek, F. Castruccio, S. Yeager, T. Delworth, and G. Danabasoglu, 2017: Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. J. Climate, 30, 27852810, https://doi.org/10.1175/JCLI-D-16-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P., and B. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2017: Tropical rainfall, Rossby waves and regional winter climate predictions. Quart. J. Roy. Meteor. Soc., 143, 111, https://doi.org/10.1002/qj.2910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010a: Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys. Res. Lett., 37, L16707, https://doi.org/10.1029/2010GL044136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010b: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and J. A. Francis, 2016: Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability. Nat. Climate Change, 6, 856860, https://doi.org/10.1038/nclimate3011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., I. Simmonds, C. Deser, and R. Tomas, 2013: The atmospheric response to three decades of observed Arctic sea ice loss. J. Climate, 26, 12301248, https://doi.org/10.1175/JCLI-D-12-00063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and J. C. Stroeve, 2015: Arctic sea ice trends, variability and implications for seasonal ice forecasting. Philos. Trans. Roy. Soc. London, A373, 20140159, https://doi.org/10.1098/RSTA.2014.0159.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. Barrett, and J. Stroeve, 2009: The emergence of surface-based Arctic amplification. Cryosphere, 3, 1119, https://doi.org/10.5194/tc-3-11-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, A., and Coauthors, 2019: Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature, 579, 233239, https://doi.org/10.1038/s41586-019-1855-2.

    • Search Google Scholar
    • Export Citation
  • Sheridan, S., and C. C. Lee, 2012: Synoptic climatology and the analysis of atmospheric teleconnections. Prog. Phys. Geogr., 36, 548557, https://doi.org/10.1177/0309133312447935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimizu, M. H., and I. F. de Albuquerque Cavalcanti, 2010: Variability patterns of Rossby wave source. Climate Dyn., 37, 441454, https://doi.org/10.1007/s00382-010-0841-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpkins, G. R., L. M. Ciasto, D. W. J. Thompson, and M. H. England, 2012: Seasonal relationships between large-scale climate variability and Antarctic sea ice concentration. J. Climate, 25, 54515469, https://doi.org/10.1175/JCLI-D-11-00367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpkins, G. R., S. McGregor, A. S. Taschetto, L. M. Ciasto, and M. H. England, 2014: Tropical connections to climatic change in the extratropical Southern Hemisphere: The role of Atlantic SST trends. J. Climate, 27, 49234936, https://doi.org/10.1175/JCLI-D-13-00615.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., F. Kucharski, J. Li, F.-F. Jin, I.-S. Kang, and R. Ding, 2017: Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat. Commun., 8, 15998, https://doi.org/10.1038/ncomms15998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2007: Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J. Climate, 20, 891907, https://doi.org/10.1175/JCLI4038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svendsen, L., N. Keenlyside, I. Bethke, Y. Gao, and N.-E. Omrani, 2018: Pacific contribution to the early twentieth-century warming in the Arctic. Nat. Climate Change, 8, 793797, https://doi.org/10.1038/s41558-018-0247-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., S.-P. Xie, and H. Mukougawa, 2017: Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability. Proc. Natl. Acad. Sci. USA, 114, 62276232, https://doi.org/10.1073/pnas.1615880114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trascasa-Castro, P., A. C. Maycock, Y. Y. Scott Yiu, and J. K. Fletcher, 2019: On the linearity of the stratospheric and Euro-Atlantic sector response to ENSO. J. Climate, 32, 66076626, https://doi.org/10.1175/JCLI-D-18-0746.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, G. Branstator, and A. S. Phillips, 2014: Seasonal aspects of the recent pause in surface warming. Nat. Climate Change, 4, 911916, https://doi.org/10.1038/nclimate2341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tyrrell, G. C., D. J. Karoly, J. L. McBride, D. J. Karoly, and J. L. McBride, 1996: Links between tropical convection and variations of the extratropical circulation during TOGA COARE. J. Atmos. Sci., 53, 27352748, https://doi.org/10.1175/1520-0469(1996)053<2735:LBTCAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., J. E. Overland, P. Ya. Groisman, and B. Rudolf, 2011: Ongoing climate change in the Arctic. Ambio, 40, 616, https://doi.org/10.1007/s13280-011-0211-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wegmann, M., S. Brönnimann, and G. P. Compo, 2017: Tropospheric circulation during the early twentieth century Arctic warming. Climate Dyn., 48, 24052418, https://doi.org/10.1007/s00382-016-3212-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., A. Abe-Ouchi, and A. Laîné, 2017: The role of atmospheric heat transport and regional feedbacks in the Arctic warming at equilibrium. Climate Dyn., 49, 34573472, https://doi.org/10.1007/s00382-017-3523-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., J. Luo, and S. Li, 2019: Impacts of tropical Indian and Atlantic Ocean warming on the occurrence of the 2017/2018 La Niña. Geophys. Res. Lett., 46, 34353445, https://doi.org/10.1029/2019GL082280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2007: Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett., 34, L23708, https://doi.org/10.1029/2007GL031601.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 136 136 28
Full Text Views 34 34 5
PDF Downloads 40 40 9

The Impact of Changes in Tropical Sea Surface Temperatures over 1979–2012 on Northern Hemisphere High-Latitude Climate

View More View Less
  • 1 British Antarctic Survey, and Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
  • 2 British Antarctic Survey, Cambridge, United Kingdom
  • 3 Earth Science Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
  • 4 School of Earth and Environment, University of Leeds, Leeds, United Kingdom
© Get Permissions
Restricted access

Abstract

While rapid changes in Arctic climate over recent decades are widely documented, the importance of different driving mechanisms is still debated. A previous study proposed a causal connection between recent tropical Pacific sea surface temperature (SST) trends and circulation changes over northern Canada and Greenland (NCG). Here, using the HadGEM3-A model, we perform a suite of sensitivity experiments to investigate the influence of tropical SSTs on winter atmospheric circulation over NCG. The experiments are forced with observed SST changes between an “early” (1979–88) and “late” period (2003–12) and applied across the entire tropics (TropSST), the tropical Pacific (PacSST), and the tropical Atlantic (AtlSST). In contrast to the previous study, all three experiments show a negative 200-hPa eddy geopotential height (Z200) anomaly over NCG in winter, which is similar to the response in AMIP experiments from four other climate models. The positive Z200 NCG anomaly in ERA-Interim between the two periods is inside the bounds of internal variability estimated from bootstrap sampling. The NCG circulation anomaly in the TropSST experiment is associated with a Rossby wave train originating from the tropical Pacific, with an important contribution coming from the tropical Atlantic SSTs connected via an atmospheric bridge through the tropical Pacific. This generates anomalous upper-level convergence and a positive Rossby wave source anomaly near the North Pacific jet exit region. Hence, while a tropics–Arctic teleconnection is evident, its influence on recent Arctic regional climate differs from observed changes and warrants further research.

Current affiliation: University of Manitoba, Winnipeg, Manitoba, Canada.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michelle R. McCrystall, michelle.mccrystall@umanitoba.ca

Abstract

While rapid changes in Arctic climate over recent decades are widely documented, the importance of different driving mechanisms is still debated. A previous study proposed a causal connection between recent tropical Pacific sea surface temperature (SST) trends and circulation changes over northern Canada and Greenland (NCG). Here, using the HadGEM3-A model, we perform a suite of sensitivity experiments to investigate the influence of tropical SSTs on winter atmospheric circulation over NCG. The experiments are forced with observed SST changes between an “early” (1979–88) and “late” period (2003–12) and applied across the entire tropics (TropSST), the tropical Pacific (PacSST), and the tropical Atlantic (AtlSST). In contrast to the previous study, all three experiments show a negative 200-hPa eddy geopotential height (Z200) anomaly over NCG in winter, which is similar to the response in AMIP experiments from four other climate models. The positive Z200 NCG anomaly in ERA-Interim between the two periods is inside the bounds of internal variability estimated from bootstrap sampling. The NCG circulation anomaly in the TropSST experiment is associated with a Rossby wave train originating from the tropical Pacific, with an important contribution coming from the tropical Atlantic SSTs connected via an atmospheric bridge through the tropical Pacific. This generates anomalous upper-level convergence and a positive Rossby wave source anomaly near the North Pacific jet exit region. Hence, while a tropics–Arctic teleconnection is evident, its influence on recent Arctic regional climate differs from observed changes and warrants further research.

Current affiliation: University of Manitoba, Winnipeg, Manitoba, Canada.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michelle R. McCrystall, michelle.mccrystall@umanitoba.ca
Save