• Ambrizzi, T., B. J. Hoskins, and H.-H. Hsu, 1995: Rossby wave propagation and teleconnection patterns in the austral winter. J. Atmos. Sci., 52, 36613672, https://doi.org/10.1175/1520-0469(1995)052<3661:RWPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basara, J. B., J. I. Christian, R. A. Wakefield, J. A. Otkin, E. H. Hunt, and D. P. Brown, 2019: The evolution, propagation, and spread of flash drought in the central United States during 2012. Environ. Res. Lett., 14, 084025, https://doi.org/10.1088/1748-9326/ab2cc0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E., H. van den Dool, and Q. Zhang, 2014: Predictability and forecast skill in NMME. J. Climate, 27, 58915906, https://doi.org/10.1175/JCLI-D-13-00597.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., and et al. , 2015: A vertically flow-following icosahedral grid model for medium-range and seasonal prediction. Part I: Model description. Mon. Wea. Rev., 143, 23862403, https://doi.org/10.1175/MWR-D-14-00300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and et al. , 2015: MERRA-2: Initial evaluation of the climate. NASA Tech. Memo. NASA/TM-2015-104606, Vol. 43, 145 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich803.pdf.

  • Bosilovich, M. G., F. R. Robertson, L. Takacs, A. Molod, and D. Mocko, 2017: Atmospheric water balance and variability in the MERRA-2 reanalysis. J. Climate, 30, 11771196, https://doi.org/10.1175/JCLI-D-16-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burnash, R. J. C., 1995: The NWS river forecast system—Catchment modeling. Computer Models of Watershed Hydrology, V. P. Singh, Ed., Water Resources Publications, 311–366.

  • Chang, Y., S. D. Schubert, R. D. Koster, A. M. Molod, and H. Wang, 2019: Tendency bias correction in coupled and uncoupled global climate models with a focus on impacts over North America. J. Climate, 32, 639661, https://doi.org/10.1175/JCLI-D-18-0598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L. G., J. Gottschalck, A. Hartman, D. Miskus, R. Tinker, and A. Artusa, 2019: Flash drought characteristics based on U.S. Drought Monitor. Atmosphere, 10, 498, https://doi.org/10.3390/atmos10090498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, P., and M. Newman, 1998: Rossby wave propagation and the rapid development of upper-level anomalous anticyclones during the 1988 U.S. drought. J. Climate, 11, 24912504, https://doi.org/10.1175/1520-0442(1998)011<2491:RWPATR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choat, B., T. J. Brodribb, C. R. Brodersen, R. A. Duursma, R. López, and B. E. Medlyn, 2018: Triggers of tree mortality under drought. Nature, 558, 531539, https://doi.org/10.1038/s41586-018-0240-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, J. I., J. B. Basara, J. A. Otkin, E. D. Hunt, R. A. Wakefield, P. X. Flanagan, and X. Xiao, 2019: A methodology for flash drought identification: Application of flash drought frequency across the United States. J. Hydrometeor., 20, 833846, https://doi.org/10.1175/JHM-D-18-0198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., S. Halder, and R. Bombardi, 2018: On the harvest of predictability from land states in a global forecast model. J. Geophys. Res. Atmos., 123, 13 11113 127, https://doi.org/10.1029/2018JD029103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rodgers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and et al. , 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2012: Elements of the Modular Ocean Model (MOM). GFDL Ocean Group Tech. Rep. 7, 618 pp., http://mdl-mom5.herokuapp.com/web/docs/project/MOM5_elements.pdf.

  • Griffies, S. M., and et al. , 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1, 4579, https://doi.org/10.5194/os-1-45-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, M., J. S. Kimball, Y. Yi, S. Running, K. Guan, K. Jensco, B. Maxwell, and M. Maneta, 2019: Impacts of the 2017 flash drought in the US Northern plains informed by satellite-based evapotranspiration and solar-induced fluorescence. Environ. Res. Lett., 14, 074019, https://doi.org/10.1088/1748-9326/ab22c3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, W., and et al. , 2018: Large-scale droughts responsible for dramatic reductions of terrestrial net carbon uptake over North America in 2011 and 2012. J. Geophys. Res. Biogeosci., 123, 20532071, https://doi.org/10.1029/2018JG004520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herrera-Estrada, J. E., J. A. Martinez, F. Dominguez, K. L. Findell, E. F. Wood, and J. Sheffield, 2019: Reduced moisture transport linked to drought propagation across North America. Geophys. Res. Lett., 46, 52435253, https://doi.org/10.1029/2019GL082475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., S. D. Schubert, and K. Mo, 2013: An interpretation of the origins of the 2012 central Great Plains drought. NOAA Drought Task Force Assessment Rep., 44 pp., https://www.esrl.noaa.gov/psd/csi/factsheets/pdf/noaa-gp-drought-assessment-report.pdf.

  • Hoerling, M. P., J. Eischeid, A. Kumar, R. Leung, A. Mariotti, K. Mo, S. D. Schubert, and R. Seager, 2014: Causes and predictability of the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95, 269282, https://doi.org/10.1175/BAMS-D-13-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos Sea Ice Model documentation and software user’s manual, version 4.1. Los Alamos National Laboratory Doc. LA-CC-06-012, 76 pp., https://csdms.colorado.edu/mediawiki/images/archive/20120126014026!CICE_documentation_and_software_user's_manual.pdf.

  • Jiang, X., and N.-C. Lau, 2008: Intraseasonal teleconnection between North American and western North Pacific monsoons with 20-day time scale. J. Climate, 21, 26642679, https://doi.org/10.1175/2007JCLI2024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and et al. , 2014: The North American multimodel ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, https://doi.org/10.1175/BAMS-D-12-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., X. Jiang, J. Boyle, S. Malyshev, and S. Xie, 2006: Diagnosis of the summertime warm and dry bias over the U.S. Southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophys. Res. Lett., 33, L18805, https://doi.org/10.1029/2006GL027567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 1996: Energy and water balance calculations in the Mosaic LSM. NASA Tech. Memo. 104606, Vol. 9, 60 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Koster130.pdf.

  • Koster, R. D., and M. J. Suarez, 2001: Soil moisture memory in climate models. J. Hydrometeor., 2, 558570, https://doi.org/10.1175/1525-7541(2001)002<0558:SMMICM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 2003: Impact of land surface initialization on seasonal precipitation and temperature prediction. J. Hydrometeor., 4, 408423, https://doi.org/10.1175/1525-7541(2003)4<408:IOLSIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822, https://doi.org/10.1029/2000JD900327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2004a: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2004b: Realistic initialization of land surface states: Impacts on subseasonal forecast skill. J. Hydrometeor., 5, 10491063, https://doi.org/10.1175/JHM-387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., S. D. Schubert, and M. J. Suarez, 2009a: Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime. J. Climate, 22, 33313341, https://doi.org/10.1175/2008JCLI2718.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Z. Guo, R. Yang, P. A. Dirmeyer, K. Mitchell, and M. J. Puma, 2009b: On the nature of soil moisture in land surface models. J. Climate, 22, 43224335, https://doi.org/10.1175/2009JCLI2832.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, https://doi.org/10.1029/2009GL041677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2011: The second phase of the Global Land–Atmosphere Coupling Experiment: Soil moisture contributions to subseasonal forecast skill. J. Hydrometeor., 12, 805822, https://doi.org/10.1175/2011JHM1365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., S. D. Schubert, H. Wang, S. P. Mahanama, and A. M. DeAngelis, 2019: Flash drought as captured by reanalysis data: Disentangling the contributions of precipitation deficit and excess evapotranspiration. J. Hydrometeor., 20, 12411258, https://doi.org/10.1175/JHM-D-18-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, https://doi.org/10.1029/94JD00483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., and M. P. Hoerling, 2016: The physics of drought in the U.S. central Great Plains. J. Climate, 29, 67836804, https://doi.org/10.1175/JCLI-D-15-0697.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, H., S.-K. Lee, S. Dong, G. Goni, B. Kirtman, R. Atlas, and A. Kumar, 2019: East Asian monsoon as a modulator of U.S. Great Plains heat waves. J. Geophys. Res. Atmos., 124, 63426358, https://doi.org/10.1029/2018JD030151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1982: Atmospheric predictability experiments with a large numerical model. Tellus, 34, 505513, https://doi.org/10.3402/tellusa.v34i6.10836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, R., E. B. Jaeger, and S. I. Seneviratne, 2010: Persistence of heat waves and its link to soil moisture memory. Geophys. Res. Lett., 37, L09703, https://doi.org/10.1029/2010GL042764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., and et al. , 2014: On the correspondence between mean forecast errors and climate errors in CMIP5 models. J. Climate, 27, 17811798, https://doi.org/10.1175/JCLI-D-13-00474.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and et al. , 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., and et al. , 2020: GEOS-S2S version 2: The GMAO high-resolution coupled model and assimilation system for seasonal prediction. J. Geophys. Res. Atmos., 125, e2019JD031767, https://doi.org/10.1029/2019JD031767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, J.-Y., B. Wang, K.-J. Ha, and J.-Y. Lee, 2013: Teleconnections associated with Northern Hemisphere summer monsoon intraseasonal oscillation. Climate Dyn., 40, 27612774, https://doi.org/10.1007/s00382-012-1394-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morcrette, C. J., and et al. , 2018: Introduction to CAUSES: Description of weather and climate models and their near-surface temperature errors in 5 day hindcasts near the Southern Great Plains. J. Geophys. Res., 123, 26552683, https://doi.org/10.1002/2017jd027199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCDC, 2019: U.S. billion-dollar weather and climate disasters 1980-2019. NOAA Rep., 16 pp., https://www.ncdc.noaa.gov/billions/events.pdf.

  • Otkin, J. A., M. C. Anderson, C. Hain, I. E. Mladenova, J. B. Basara, and M. Svoboda, 2013: Examining rapid onset drought development using the thermal infrared–based evaporative stress index. J. Hydrometeor., 14, 10571074, https://doi.org/10.1175/JHM-D-12-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., and et al. , 2016: Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought. Agric. For. Meteor., 218–219, 230242, https://doi.org/10.1016/j.agrformet.2015.12.065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. Svoboda, E. D. Hunt, T. W. Ford, M. C. Anderson, C. Hain, and J. B. Basara, 2018: Flash droughts: A review and assessment of the challenges imposed by rapid-onset droughts in the United States. Bull. Amer. Meteor. Soc., 99, 911919, https://doi.org/10.1175/BAMS-D-17-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pegion, K., and et al. , 2019: The Subseasonal Experiment (SubX): A multimodel subseasonal prediction experiment. Bull. Amer. Meteor. Soc., 100, 20432060, https://doi.org/10.1175/BAMS-D-18-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and et al. , 2020: Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Climate Change, 10, 191199, https://doi.org/10.1038/s41558-020-0709-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., and Q. Liu, 2014: Observation-corrected precipitation estimates in GEOS-5. NASA Tech. Rep. NASA/TM-2014-104606, Vol. 35, 18 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150000725.pdf.

  • Reichle, R. H., Q. Liu, R. D. Koster, C. S. Draper, S. P. P. Mahanama, and G. S. Partyka, 2017: Land surface precipitation in MERRA-2. J. Climate, 30, 16431664, https://doi.org/10.1175/JCLI-D-16-0570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rippey, B. R., 2015: The U.S. drought of 2012. Wea. Climate Extremes, 10, 5764, https://doi.org/10.1016/j.wace.2015.10.004.

  • Roy, T., J. A. Martinez, J. E. Herrera-Estrada, Y. Zhang, F. Dominguez, A. Berg, M. Ek, and E. F. Wood, 2019: Role of moisture transport and recycling in characterizing droughts: Perspectives from two recent U.S. droughts and the CFSv2 system. J. Hydrometeor., 20, 139154, https://doi.org/10.1175/JHM-D-18-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., H. Wang, and M. J. Suarez, 2011: Warm season subseasonal variability and climate extremes in the Northern Hemisphere: The role of stationary Rossby waves. J. Climate, 24, 47734792, https://doi.org/10.1175/JCLI-D-10-05035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., H. Wang, R. D. Koster, M. J. Suarez, and P. Ya. Groisman, 2014: Northern Eurasian heat waves and droughts. J. Climate, 27, 31693207, https://doi.org/10.1175/JCLI-D-13-00360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., and et al. , 2016: Global meteorological drought: A synthesis of current understanding with a focus on SST drivers of precipitation deficits. J. Climate, 29, 39894019, https://doi.org/10.1175/JCLI-D-15-0452.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, E., and et al. , 2019: Impact of soil moisture initialization on boreal summer subseasonal forecasts: Mid-latitude surface air temperature and heat wave events. Climate Dyn., 52, 16951709, https://doi.org/10.1007/s00382-018-4221-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A. B., and R. W. Katz, 2013: US billion-dollar weather and climate disasters: Data sources, trends, accuracy and biases. Nat. Hazards, 67, 387410, https://doi.org/10.1007/s11069-013-0566-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., R. Bleck, S. G. Benjamin, B. W. Green, and G. A. Grell, 2018: Subseasonal forecasting with an icosahedral, vertically quasi-Lagrangian coupled model. Part I: Model overview and evaluation of systematic errors. Mon. Wea. Rev., 146, 16011617, https://doi.org/10.1175/MWR-D-18-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and et al. , 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190, https://doi.org/10.1175/1520-0477-83.8.1181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., G. Branstator, H. Wang, G. A. Meehl, and W. M. Washington, 2013: Probability of US heat waves affected by a subseasonal planetary wave pattern. Nat. Geosci., 6, 10561061, https://doi.org/10.1038/ngeo1988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Hurk, B., F. Doblas-Reyes, G. Balsamo, R. D. Koster, S. I. Seneviratne, and H. Camargo Jr., 2012: Soil moisture effects on seasonal temperature and precipitation forecast scores in Europe. Climate Dyn., 38, 349362, https://doi.org/10.1007/s00382-010-0956-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogel, E., M. G. Donat, L. V. Alexander, M. Meinshausen, D. K. Ray, D. Karoly, N. Meinshausen, and K. Frieler, 2019: The effects of climate extremes on global agricultural yields. Environ. Res. Lett., 14, 054010, https://doi.org/10.1088/1748-9326/ab154b.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., S. D. Schubert, R. D. Koster, Y.-G. Ham, and M. J. Suarez, 2014: On the role of SST forcing in the 2011 and 2012 extreme U.S. heat and drought: A study in contrasts. J. Hydrometeor., 15, 12551273, https://doi.org/10.1175/JHM-D-13-069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., S. D. Schubert, and R. D. Koster, 2017: North American drought and links to northern Eurasia: The role of stationary Rossby waves. Climate Extremes: Patterns and Mechanisms, Geophys. Monogr., Vol. 226, Amer. Geophys. Union, 197–221.

    • Crossref
    • Export Citation
  • Wang, Y.-C., and H. H. Hsu, 2019: Improving diurnal rainfall phase over the Southern Great Plains in warm seasons by using a convective triggering design. Int. J. Climatol., 39, 51815190, https://doi.org/10.1002/joc.6117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., and et al. , 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xie, S., and et al. , 2019: Improved diurnal cycle of precipitation in E3SM with a revised convective triggering function. J. Adv. Model. Earth Syst., 11, 22902310, https://doi.org/10.1029/2019MS001702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., S. Xie, S. A. Klein, H.-Y. Ma, S. Tang, K. Van Weverberg, C. J. Morcrette, and J. Petch, 2018: CAUSES: Diagnosis of the summertime warm bias in CMIP5 climate models at the ARM Southern Great Plains site. J. Geophys. Res. Atmos., 123, 29682992, https://doi.org/10.1002/2017JD027200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Q. Sun, L. Magnusson, R. Buizza, S.-J. Lin, J.-H. Chen, and K. Emanuel, 2019: What is the predictability limit of midlatitude weather? J. Atmos. Sci., 76, 10771091, https://doi.org/10.1175/JAS-D-18-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, X., J.-C. Golaz, S. Xie, Q. Tang, W. Lin, M. Zhang, H.-Y. Ma, and E. L. Roesler, 2019: The summertime precipitation bias in E3SM atmosphere model version 1 over the central United States. J. Geophys. Res. Atmos., 124, 89358952, https://doi.org/10.1029/2019JD030662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and T. Li, 2016: A new paradigm for continental U.S. summer rainfall variability: Asia–North America teleconnection. J. Climate, 29, 73137327, https://doi.org/10.1175/JCLI-D-16-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 217 217 16
Full Text Views 97 97 14
PDF Downloads 114 114 12

Prediction Skill of the 2012 U.S. Great Plains Flash Drought in Subseasonal Experiment (SubX) Models

View More View Less
  • 1 Science Systems and Applications, Inc., Lanham, Maryland
  • | 2 Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland
  • | 3 Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland
  • | 4 Goddard Earth Sciences Technology and Research, Morgan State University, Baltimore, Maryland
© Get Permissions
Restricted access

Abstract

Rapid-onset droughts, known as flash droughts, can have devastating impacts on agriculture, water resources, and ecosystems. The ability to predict flash droughts in advance would greatly enhance our preparation for them and potentially mitigate their impacts. Here, we investigate the prediction skill of the extreme 2012 flash drought over the U.S. Great Plains at subseasonal lead times (3 weeks or more in advance) in global forecast systems participating in the Subseasonal Experiment (SubX). An additional comprehensive set of subseasonal hindcasts with NASA’s GEOS model, a SubX model with relatively high prediction skill, was performed to investigate the separate contributions of atmospheric and land initial conditions to flash drought prediction skill. The results show that the prediction skill of the SubX models is quite variable. While skillful predictions are restricted to within the first two forecast weeks in most models, skill is considerably better (3–4 weeks or more) for certain models and initialization dates. The enhanced prediction skill is found to originate from two robust sources: 1) accurate soil moisture initialization once dry soil conditions are established, and 2) the satisfactory representation of quasi-stationary cross-Pacific Rossby wave trains that lead to the rapid intensification of flash droughts. Evidence is provided that the importance of soil moisture initialization applies more generally to central U.S. summer flash droughts. Our results corroborate earlier findings that accurate soil moisture initialization is important for skillful subseasonal forecasts and highlight the need for additional research on the sources and predictability of drought-inducing quasi-stationary atmospheric circulation anomalies.

Corresponding author: Anthony M. DeAngelis, anthony.deangelis@nasa.gov

Abstract

Rapid-onset droughts, known as flash droughts, can have devastating impacts on agriculture, water resources, and ecosystems. The ability to predict flash droughts in advance would greatly enhance our preparation for them and potentially mitigate their impacts. Here, we investigate the prediction skill of the extreme 2012 flash drought over the U.S. Great Plains at subseasonal lead times (3 weeks or more in advance) in global forecast systems participating in the Subseasonal Experiment (SubX). An additional comprehensive set of subseasonal hindcasts with NASA’s GEOS model, a SubX model with relatively high prediction skill, was performed to investigate the separate contributions of atmospheric and land initial conditions to flash drought prediction skill. The results show that the prediction skill of the SubX models is quite variable. While skillful predictions are restricted to within the first two forecast weeks in most models, skill is considerably better (3–4 weeks or more) for certain models and initialization dates. The enhanced prediction skill is found to originate from two robust sources: 1) accurate soil moisture initialization once dry soil conditions are established, and 2) the satisfactory representation of quasi-stationary cross-Pacific Rossby wave trains that lead to the rapid intensification of flash droughts. Evidence is provided that the importance of soil moisture initialization applies more generally to central U.S. summer flash droughts. Our results corroborate earlier findings that accurate soil moisture initialization is important for skillful subseasonal forecasts and highlight the need for additional research on the sources and predictability of drought-inducing quasi-stationary atmospheric circulation anomalies.

Corresponding author: Anthony M. DeAngelis, anthony.deangelis@nasa.gov
Save