Simulated Impact of the Tibetan Glacier Expansion on the Eurasian Climate and Glacial Surface Mass Balance during the Last Glacial Maximum

Yonggang Liu Department of Atmospheric and Oceanic Sciences, Peking University, Beijing, China

Search for other papers by Yonggang Liu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8844-2185
,
Yubin Wu State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yubin Wu in
Current site
Google Scholar
PubMed
Close
,
Zhongda Lin State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Zhongda Lin in
Current site
Google Scholar
PubMed
Close
,
Yang Zhang School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Yang Zhang in
Current site
Google Scholar
PubMed
Close
,
Jiang Zhu Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by Jiang Zhu in
Current site
Google Scholar
PubMed
Close
, and
Chaolu Yi Institute of Tibetan Plateau Research, Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China

Search for other papers by Chaolu Yi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Glaciers over the Tibetan Plateau and surrounding regions during the Last Glacial Maximum (LGM) were much more extensive than during the preindustrial period (PI). The climate impact of such glacial expansion is studied here using the Community Atmosphere Model, version 4 (CAM4). To cover the range of uncertainty in glacier area during the LGM, the following three values are tested: 0.35 × 106, 0.53 × 106, and 0.70 × 106 km2. The added glacier is distributed approximately equally over the Pamir region and the Himalayas. If 0.70 × 106 km2 is used, the annual mean surface temperature of the glaciated regions would be cooled by ~3.5°C. The annual mean precipitation would be reduced by 0.2 mm day−1 (10%) and 2.5 mm day−1 (24%) over the Pamir region and Himalayas, respectively. The surface mass balance (SMB) of the glaciers changes by 0.55 m yr−1 (280%) and −0.32 m yr−1 (−20%) over the two regions, respectively. The changes in SMB remain large (0.29 and −0.13 m yr−1), even if the area of the Tibetan glacier were 0.35 × 106 km2. Therefore, based on the results of this particular model, the expansion of glaciers can either enhance or slow the glacial growth. Moreover, the expansion of glaciers over the Himalayas reduces summer precipitation in central and northern China by ~0.5 mm day−1 and increases summer precipitation in southern Asia by ~0.6 mm day−1. The expansion of glaciers over the Pamir region has a negligible influence on the precipitation in these monsoonal regions, which is likely due to its large distance from the main monsoonal regions.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0763.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chaolu Yi, clyi@itpcas.ac.cn

Abstract

Glaciers over the Tibetan Plateau and surrounding regions during the Last Glacial Maximum (LGM) were much more extensive than during the preindustrial period (PI). The climate impact of such glacial expansion is studied here using the Community Atmosphere Model, version 4 (CAM4). To cover the range of uncertainty in glacier area during the LGM, the following three values are tested: 0.35 × 106, 0.53 × 106, and 0.70 × 106 km2. The added glacier is distributed approximately equally over the Pamir region and the Himalayas. If 0.70 × 106 km2 is used, the annual mean surface temperature of the glaciated regions would be cooled by ~3.5°C. The annual mean precipitation would be reduced by 0.2 mm day−1 (10%) and 2.5 mm day−1 (24%) over the Pamir region and Himalayas, respectively. The surface mass balance (SMB) of the glaciers changes by 0.55 m yr−1 (280%) and −0.32 m yr−1 (−20%) over the two regions, respectively. The changes in SMB remain large (0.29 and −0.13 m yr−1), even if the area of the Tibetan glacier were 0.35 × 106 km2. Therefore, based on the results of this particular model, the expansion of glaciers can either enhance or slow the glacial growth. Moreover, the expansion of glaciers over the Himalayas reduces summer precipitation in central and northern China by ~0.5 mm day−1 and increases summer precipitation in southern Asia by ~0.6 mm day−1. The expansion of glaciers over the Pamir region has a negligible influence on the precipitation in these monsoonal regions, which is likely due to its large distance from the main monsoonal regions.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0763.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chaolu Yi, clyi@itpcas.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 3.28 MB)
Save
  • Anand, A., S. K. Mishra, S. Sahany, M. Bhowmick, J. S. Rawat, and S. K. Dash, 2018: Indian summer monsoon simulations: Usefulness of increasing horizontal resolution, manual tuning, and semi-automatic tuning in reducing present-day model biases. Sci. Rep., 8, 3522, https://doi.org/10.1038/S41598-018-21865-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annan, J. D., and J. C. Hargreaves, 2013: A new global reconstruction of temperature changes at the Last Glacial Maximum. Climate Past, 9, 367376, https://doi.org/10.5194/cp-9-367-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arendt, A. A., and Coauthors, 2015: Randolph Glacier Inventory—A dataset of global glacier outlines: Version 5.0. GLIMS Tech. Rep., 63 pp., https://www.glims.org/RGI/00_rgi50_TechnicalNote.pdf.

  • Bakke, J., and A. Nesje, 2011: Equilibrium-line altitude. Encyclopedia of Snow, Ice and Glaciers, V. P. Singh et al., Eds., Springer, 268–277.

    • Crossref
    • Export Citation
  • Boos, W. R., and Z. Kuang, 2010: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463, 218222, https://doi.org/10.1038/nature08707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R. and Z. Kuang, 2013: Sensitivity of the South Asian monsoon to elevated and non-elevated heating. Sci. Rep., 3, 1192, https://doi.org/10.1038/SREP01192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and T. Storelvmo, 2016: Near-linear response of mean monsoon strength to a broad range of radiative forcings. Proc. Natl. Acad. Sci. USA, 113, 15101515, https://doi.org/10.1073/pnas.1517143113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A. M., R. Z. Sun, and J. H. He, 2017: Impact of surface sensible heating over the Tibetan Plateau on the western Pacific subtropical high: A land–air–sea interaction perspective. Adv. Atmos. Sci., 34, 157168, https://doi.org/10.1007/s00376-016-6008-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gärtner-Roer, I., K. Naegeli, M. Huss, T. Knecht, H. Machguth, and M. Zemp, 2014: A database of worldwide glacier thickness observations. Global Planet. Change, 122, 330344, https://doi.org/10.1016/j.gloplacha.2014.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hahn, D. G., and S. Manabe, 1975: Role of mountains in South Asian monsoon circulation. J. Atmos. Sci., 32, 15151541, https://doi.org/10.1175/1520-0469(1975)032<1515:TROMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, F., 2011: Simulating transient climate evolution of the last deglaciation with CCSM3. Ph.D. Thesis, Center for Climatic Research, University of Wisconsin–Madison, 177 pp.

  • Heyman, J., 2014: Paleoglaciation of the Tibetan Plateau and surrounding mountains based on exposure ages and ELA depression estimates. Quat. Sci. Rev., 91, 3041, https://doi.org/10.1016/j.quascirev.2014.03.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, P. D., and P. L. Gibbard, 2015: A stratigraphical basis for the Last Glacial Maximum (LGM). Quat. Int., 383, 174185, https://doi.org/10.1016/j.quaint.2014.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huybrechts, P., and S. T’Siobbel, 1995: Thermomechanical modelling of Northern Hemisphere ice sheets with a two-level mass-balance parameterization. Ann. Glaciol., 21, 111116, https://doi.org/10.1017/S0260305500015688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, D., H. Wang, and X. Lang, 2002: Possible influence of the Tibetan ice sheet on the climate of Last Glacial Maximum (in Chinese). Quat. Sci., 22, 323331.

    • Search Google Scholar
    • Export Citation
  • Jiang, D., H. Wang, H. Drange, and X. M. Lang, 2003: Last Glacial Maximum over China: Sensitivities of climate to paleovegetation and Tibetan ice sheet. J. Geophys. Res., 108, 4102, https://doi.org/10.1029/2002JD002167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, D., Z. Tian, and X. Lang, 2016: Reliability of climate models for China through the IPCC Third to Fifth Assessment Reports. Int. J. Climatol., 36, 11141133, https://doi.org/10.1002/joc.4406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, D., Y. Liu, and X. Lang, 2019: A multi-model analysis of glacier equilibrium line altitudes in western China during the Last Glacial Maximum. Sci. China Earth Sci., 62, 12411255, https://doi.org/10.1007/s11430-018-9266-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, L., A. Ganopolski, F. Chen, M. Claussen, and H. Wang, 2005: Impacts of snow and glaciers over Tibetan Plateau on Holocene climate change: Sensitivity experiments with a coupled model of intermediate complexity. Geophys. Res. Lett., 32, L17709, https://doi.org/10.1029/2005GL023202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, L., H. J. Vang, F. H. Chen, and D. B. Jiang, 2006: A possible impact of cooling over the Tibetan Plateau on the mid-Holocene East Asian monsoon climate. Adv. Atmos. Sci., 23, 543550, https://doi.org/10.1007/s00376-006-0543-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, L., Y. Peng, F. Chen, and A. Ganopolski, 2009: Modeling sensitivity study of the possible impact of snow and glaciers developing over Tibetan Plateau on Holocene African–Asian summer monsoon climate. Climate Past, 5, 457469, https://doi.org/10.5194/cp-5-457-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirchner, N., R. Greve, J. Heyman, and A. Stroeven, 2009: Tibetan Plateau glaciation during the last glacial cycle: Widely diverging (LGM-) reconstructions of glacial extents using numerical ice sheet simulations driven by GCM-ensembles of climate forcings. Geophysical Research Abstracts, Vol. 11, Abstract 1791, https://meetingorganizer.copernicus.org/EGU2009/EGU2009-1791.pdf.

  • Kirchner, N., R. Greve, A. P. Stroeven, and J. Heyman, 2011: Paleoglaciological reconstructions for the Tibetan Plateau during the last glacial cycle: Evaluating numerical ice sheet simulations driven by GCM-ensembles. Quat. Sci. Rev., 30, 248267, https://doi.org/10.1016/j.quascirev.2010.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhle, M., 1985: Glaciation research in the Himalayas: A new ice age theory. Universitas, 27, 281294.

  • Kuhle, M., 1998: Reconstruction of the 2.4 million km2 late Pleistocene ice sheet on the Tibetan Plateau and its impact on the global climate. Quat. Int., 45–46, 71108, https://doi.org/10.1016/S1040-6182(97)00008-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhle, M., 2005: Glacial geomorphology and ice ages in Tibet and the surrounding mountains. Isl. Arc, 14, 346367, https://doi.org/10.1111/j.1440-1738.2005.00501.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., and B. Wang, 2014: Future change of global monsoon in the CMIP5. Climate Dyn., 42, 101119, https://doi.org/10.1007/s00382-012-1564-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, B., and J. Li, 1991: Map of Quaternary trace of glaciers over the Tibetan Plateau (in Chinese). Science Press, 1 p.

  • Li, C. F., and M. Yanai, 1996: The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast. J. Climate, 9, 358375, https://doi.org/10.1175/1520-0442(1996)009<0358:TOAIVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., and Z. W. Wu, 2011: Contribution of the autumn Tibetan Plateau snow cover to seasonal prediction of North American winter temperature. J. Climate, 24, 28012813, https://doi.org/10.1175/2010JCLI3889.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., and Z. W. Wu, 2012: Contribution of Tibetan Plateau snow cover to the extreme winter conditions of 2009/10. Atmos.–Ocean, 50, 8694, https://doi.org/10.1080/07055900.2011.649036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Z., F. Liu, B. Wang, R. Lu, and X. Qu, 2017: Southern European rainfall reshapes the early-summer circumglobal teleconnection after the late 1970s. Climate Dyn., 48, 38553868, https://doi.org/10.1007/s00382-016-3306-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., R. G. Wu, Y. Z. Zhang, and S. L. Nan, 2014: The summer snow cover anomaly over the Tibetan Plateau and its association with simultaneous precipitation over the mei-yu-baiu region. Adv. Atmos. Sci., 31, 755764, https://doi.org/10.1007/s00376-013-3183-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S. Z., Q. G. Wu, X. J. Ren, Y. H. Yao, S. R. Schroeder, and H. Hu, 2017: Modeled Northern Hemisphere autumn and winter climate responses to realistic Tibetan Plateau and Mongolia snow anomalies. J. Climate, 30, 94359454, https://doi.org/10.1175/JCLI-D-17-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X. D., and Z. Y. Yin, 2002: Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr., Palaeoclimatol., Palaeoecol., 183, 223245, https://doi.org/10.1016/S0031-0182(01)00488-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. M., Z. Q. Wang, H. F. Zhuo, and G. X. Wu, 2017: Two types of summertime heating over Asian large-scale orography and excitation of potential-vorticity forcing II. Sensible heating over Tibetan-Iranian Plateau. Sci. China Earth Sci., 60, 733744, https://doi.org/10.1007/s11430-016-9016-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, M., S. Yang, Z. Li, B. He, S. He, and Z. Wang, 2018: Possible effect of the Tibetan Plateau on the “upstream” climate over west Asia, North Africa, south Europe and the North Atlantic. Climate Dyn., 51, 14851498, https://doi.org/10.1007/s00382-017-3966-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, D., W. Boos, and Z. M. Kuang, 2014: Effects of orography and surface heat fluxes on the South Asian summer monsoon. J. Climate, 27, 66476659, https://doi.org/10.1175/JCLI-D-14-00138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuimura, T., and Coauthors, 2015: The GAMDAM glacier inventory: A quality-controlled inventory of Asian glaciers. Cryosphere, 9, 849864, https://doi.org/10.5194/tc-9-849-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Owen, L. A., and J. M. Dortch, 2014: Nature and timing of Quaternary glaciation in the Himalayan–Tibetan orogen. Quat. Sci. Rev., 88, 1454, https://doi.org/10.1016/j.quascirev.2013.11.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampe, T., and S. P. Xie, 2010: Large-scale dynamics of the meiyu-baiu rainband: Environmental forcing by the westerly jet. J. Climate, 23, 113134, https://doi.org/10.1175/2009JCLI3128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2012: Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1). Geosci. Model Dev., 5, 185191, https://doi.org/10.5194/gmd-5-185-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Y., B. Zheng, and S. Li, 1992: Last glaciation and maximum glaciation in the Qinghai-Xizang (Tibet) Plateau: A controversy to M. Kuhle’s ice sheet hypothesis. Chin. Geogr. Sci., 2, 293311, https://doi.org/10.1007/BF02664561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Y., B. Zheng, and T. Yao, 1997: Glaciers and environments during the Last Glacial Maximum (LGM) on the Tibetan Plateau (in Chinese). J. Glaciol. Geocryol., 19, 97113.

    • Search Google Scholar
    • Export Citation
  • Snyder, C. W., 2016: Evolution of global temperature over the past two million years. Nature, 538, 226228, https://doi.org/10.1038/nature19798.

  • Son, J. H., K. H. Seo, and B. Wang, 2019: Dynamical control of the Tibetan Plateau on the East Asian summer monsoon. Geophys. Res. Lett., 46, 76727679, https://doi.org/10.1029/2019GL083104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 27112744, https://doi.org/10.1007/s00382-012-1607-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarasov, L., and W. R. Peltier, 1997: Terminating the 100 kyr ice age cycle. J. Geophys. Res., 102, 21 66521 693, https://doi.org/10.1029/97JD01766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarasov, L., and W. R. Peltier, 1999: Impact of thermomechanical ice sheet coupling on a model of the 100 kyr ice age cycle. J. Geophys. Res., 104, 95179545, https://doi.org/10.1029/1998JD200120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinoj, V., P. J. Rasch, H. L. Wang, J. H. Yoon, P. L. Ma, K. Landu, and B. Singh, 2014: Short-term modulation of Indian summer monsoon rainfall by west Asian dust. Nat. Geosci., 7, 308313, https://doi.org/10.1038/ngeo2107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. H. Ding, 2008: Global monsoon: Dominant mode of annual variation in the tropics. Dyn. Atmos. Oceans, 44, 165183, https://doi.org/10.1016/j.dynatmoce.2007.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. X., B. Wang, H. Cheng, J. Fasullo, Z. T. Guo, T. Kiefer, and Z. Y. Liu, 2017: The global monsoon across time scales: Mechanisms and outstanding issues. Earth-Sci. Rev., 174, 84121, https://doi.org/10.1016/j.earscirev.2017.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 2000: Atmosphere-ocean thermal coupling in the North Atlantic: A positive feedback. Quart. J. Roy. Meteor. Soc., 126, 33433369, https://doi.org/10.1002/qj.49712657017; Corrigendum, 127, 733–734, https://doi.org/10.1002/qj.49712757223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G. X., and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J. Hydrometeor., 8, 770789, https://doi.org/10.1175/JHM609.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G. X., and Coauthors, 2015: Tibetan Plateau climate dynamics: Recent research progress and outlook. Natl. Sci. Rev., 2, 100116, https://doi.org/10.1093/nsr/nwu045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G. X., H. F. Zhuo, Z. Q. Wang, and Y. M. Liu, 2016: Two types of summertime heating over the Asian large-scale orography and excitation of potential-vorticity forcing I. Over Tibetan Plateau. Sci. China Earth Sci., 59, 19962008, https://doi.org/10.1007/s11430-016-5328-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y., Y. Liu, C. Yi, and P. Liu, 2019: Impact of Tibetan glacier change on the Asian climate during the Last Glacial Maximum (in Chinese). Beijing Daxue Xuebo Ziran Kexuebao, 55, 159170.

    • Search Google Scholar
    • Export Citation
  • Xu, X. K., and N. F. Glasser, 2015: Glacier sensitivity to equilibrium line altitude and reconstruction for the Last Glacial cycle: Glacier modeling in the Payuwang Valley, western Nyaicientanggulha Shan, Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol., 440, 614620, https://doi.org/10.1016/j.palaeo.2015.09.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X. K., and C. L. Yi, 2017: Timing and configuration of the Gongga II glaciation in the Hailuogou valley, eastern Tibetan Plateau: A glacier-climate modeling method. Quat. Int., 444, 151156, https://doi.org/10.1016/j.quaint.2017.01.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X. K., B. L. Pan, G. C. Dong, C. L. Yi, and N. F. Glasser, 2017: Last Glacial climate reconstruction by exploring glacier sensitivity to climate on the southeastern slope of the western Nyaiqentanglha Shan, Tibetan Plateau. J Glaciol., 63, 361371, https://doi.org/10.1017/jog.2016.147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, M., B. Wang, and J. Liu, 2016: Global monsoon change during the Last Glacial Maximum: A multi-model study. Climate Dyn., 47, 359374, https://doi.org/10.1007/s00382-015-2841-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Q., L. A. Owen, H. J. Wang, and Z. S. Zhang, 2018: Climate constraints on glaciation over high-mountain Asia during the Last Glacial Maximum. Geophys. Res. Lett., 45, 90249033, https://doi.org/10.1029/2018GL079168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasui, S., and M. Watanabe, 2010: Forcing processes of the summertime circumglobal teleconnection pattern in a dry AGCM. J. Climate, 23, 20932114, https://doi.org/10.1175/2009JCLI3323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, D. Z., and G. X. Wu, 1998: The role of the heat source of the Tibetan Plateau in the general circulation. Meteor. Atmos. Phys., 67, 181198, https://doi.org/10.1007/BF01277509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., and Coauthors, 2017: Reduced ENSO variability at the LGM revealed by an isotope-enabled Earth system model. Geophys. Res. Lett., 44, 69846992, https://doi.org/10.1002/2017GL073406.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 118 0 0
Full Text Views 571 153 9
PDF Downloads 523 151 4