A Simulation Study of Kelvin Waves Interacting with Synoptic Events during December 2016 in the South China Sea and Maritime Continent

Li-Huan Hsu National Science and Technology Center for Disaster Reduction, New Taipei City, Taiwan

Search for other papers by Li-Huan Hsu in
Current site
Google Scholar
PubMed
Close
,
Li-Shan Tseng Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan

Search for other papers by Li-Shan Tseng in
Current site
Google Scholar
PubMed
Close
,
Shu-Yu Hou Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Shu-Yu Hou in
Current site
Google Scholar
PubMed
Close
,
Buo-Fu Chen Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Buo-Fu Chen in
Current site
Google Scholar
PubMed
Close
, and
Chung-Hsiung Sui Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Chung-Hsiung Sui in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2842-5660
Restricted access

Abstract

This study evaluates the model simulation of interaction between convectively coupled tropical disturbances in the South China Sea (SCS) and Maritime Continent (MC). The Model for Prediction Across Scales (MPAS) is used to simulate the major interaction events in December 2016 with a fixed 60-km horizontal resolution and a variable 60–15-km resolution. Compared with an observational analysis, the overall spatial and temporal evolution of simulated rainfall and circulation reveals the capability of MPAS for reproducing equatorial Kelvin waves (KWs), and the interactions with equatorial Rossby waves and off-equatorial mixed Rossby–gravity (MRG)/TD-type waves up to a 5–7-day lead in both fixed 60-km and variable 60–15-km resolutions. Two interaction events are further examined. One involves an MRG/TD wave, prevailing northeasterlies, and a Borneo vortex developed in SCS during 6–11 December. The other involves a KW converging with the easterly trade wind that led to an MRG/TD-type wave and the formation of Typhoon Nock-ten during 16–20 December. The MPAS 60–15-km resolution tends to produce stronger precipitation and more coherent vorticity structures in both interaction events. Increasing the resolution to 15 km contributes to better representation of finer spatial vorticity and rainfall structures.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chung-Hsiung Sui, sui@as.ntu.edu.tw

Abstract

This study evaluates the model simulation of interaction between convectively coupled tropical disturbances in the South China Sea (SCS) and Maritime Continent (MC). The Model for Prediction Across Scales (MPAS) is used to simulate the major interaction events in December 2016 with a fixed 60-km horizontal resolution and a variable 60–15-km resolution. Compared with an observational analysis, the overall spatial and temporal evolution of simulated rainfall and circulation reveals the capability of MPAS for reproducing equatorial Kelvin waves (KWs), and the interactions with equatorial Rossby waves and off-equatorial mixed Rossby–gravity (MRG)/TD-type waves up to a 5–7-day lead in both fixed 60-km and variable 60–15-km resolutions. Two interaction events are further examined. One involves an MRG/TD wave, prevailing northeasterlies, and a Borneo vortex developed in SCS during 6–11 December. The other involves a KW converging with the easterly trade wind that led to an MRG/TD-type wave and the formation of Typhoon Nock-ten during 16–20 December. The MPAS 60–15-km resolution tends to produce stronger precipitation and more coherent vorticity structures in both interaction events. Increasing the resolution to 15 km contributes to better representation of finer spatial vorticity and rainfall structures.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chung-Hsiung Sui, sui@as.ntu.edu.tw
Save
  • Birch, C. E., M. J. Roberts, L. Garcia-Carreras, D. Ackerley, M. J. Reeder, A. P. Lock, and R. Schiemann, 2015: Sea breeze dynamics and convection initiation: The influence of convective parameterization in weather and climate model biases. J. Climate, 28, 80938108, https://doi.org/10.1175/JCLI-D-14-00850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., C.-H. Liu, and H.-C. Kuo, 2003: Typhoon Vamei: An equatorial tropical cyclone formation. Geophys. Res. Lett., 30, 1150, https://doi.org/10.1029/2002GL016365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., P. A. Harr, and H.-J. Chen, 2005: Synoptic disturbances over the equatorial South China Sea and western Maritime Continent during boreal winter. Mon. Wea. Rev., 133, 489503, https://doi.org/10.1175/MWR-2868.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., Z. Wang, and H. Hendon, 2006: The Asian winter monsoon. The Asian Monsoon, B. Wang, Ed., Praxis, 89–127.

    • Crossref
    • Export Citation
  • Chang, C.-P., M. Lu, and H. Lim, 2016: Monsoon convection in the Maritime Continent: Interaction of large-scale motion and complex terrain. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Michio Yanai, Meteor. Monogr., No. 56, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0011.1.

    • Crossref
    • Export Citation
  • Cheang, B. K., 1977: Synoptic features and structures of some equatorial vortices over the South China Sea in the Malaysian region during the winter monsoon of December 1973. Pure Appl. Geophys., 115, 13031333, https://doi.org/10.1007/BF00874411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W.-T., S.-P. Hsu, Y.-H. Tsai, and C.-H. Sui, 2019: The influences of convectively coupled Kelvin waves on multiscale rainfall variability over the South China Sea and Maritime Continent in December 2016. J. Climate, 32, 69776993, https://doi.org/10.1175/JCLI-D-18-0471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., D. A. Ahijevych, W. Wang, and W. C. Skamarock, 2016: Evaluating medium-range tropical cyclone forecasts in uniform- and variable-resolution global models. Mon. Wea. Rev., 144, 41414160, https://doi.org/10.1175/MWR-D-16-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., and F. X. Crum, 1995: Eastward propagating 2- to 15-day equatorial convection and its relation to the tropical intraseasonal oscillation. J. Geophys. Res., 100, 25 78125 790, https://doi.org/10.1029/95JD02678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and P. E. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 23972417, https://doi.org/10.1175/MWR3204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., P. E. Roundy, C. J. Schreck, A. Vintzileos, and C. Zhang, 2013: Large-scale atmospheric and oceanic conditions during the 2011–2012 DYNAMO field campaign. Mon. Wea. Rev., 141, 41734196, https://doi.org/10.1175/MWR-D-13-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S., R. Leung, S. A. Rauscher, and T. Ringler, 2013: Error characteristics of two grid refinement approaches in aquaplanet simulations: MPAS-A and WRF. Mon. Wea. Rev., 141, 30223036, https://doi.org/10.1175/MWR-D-12-00338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C.-Y., Y. Zhang, W. C. Skamarock, and L.-H. Hsu, 2017: Influences of large-scale flow variations on the track evolution of Typhoons Morakot (2009) and Megi (2010): Simulations with a global variable-resolution model. Mon. Wea. Rev., 145, 16911716, https://doi.org/10.1175/MWR-D-16-0363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2017a: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 5.1, 34 pp., https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V5.1b.pdf.

  • Huffman, G. J., D. T. Bolvin, and E. J. Nelkin, 2017b: Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation. NASA Tech. Doc., 54 pp., https://pmm.nasa.gov/sites/default/files/document_files/IMERG_technical_doc_3_22_17.pdf.

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and R. A. Houze Jr., 1987: Precipitating cloud systems of the Asian monsoon. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 298–353.

  • Klemp, J. B., 2011: A terrain-following coordinate with smoothed coordinate surfaces. Mon. Wea. Rev., 139, 21632169, https://doi.org/10.1175/MWR-D-10-05046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and C. P. Chang, 1987: Planetary scale aspects of winter monsoon and teleconnections. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 161–202.

  • Lindzen, R. S., 1967: Planetary waves on beta planes. Mon. Wea. Rev., 95, 441451, https://doi.org/10.1175/1520-0493(1967)095<0441:PWOBP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and B. Khouider, 2004: A model for convectively coupled tropical waves: Nonlinearity, rotation, and comparison with observations. J. Atmos. Sci., 61, 21882205, https://doi.org/10.1175/1520-0469(2004)061<2188:AMFCCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B., S. Tulich, J. Lin, and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329, https://doi.org/10.1016/j.dynatmoce.2006.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce, 2000: NCEP FNL operational model global tropospheric analyses, continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 1 January 2017, https://doi.org/10.5065/D6M043C6.

    • Crossref
    • Export Citation
  • National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce, 2007: NCEP Global Forecast System (GFS) analyses and forecasts. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 24 November 2016, https://doi.org/10.5065/D65Q4TSG.

    • Crossref
    • Export Citation
  • Park, S.-H., J. B. Klemp, and W. C. Skamarock, 2014: A comparison of mesh refinement in the global MPAS-A and WRF models. Mon. Wea. Rev., 142, 36143634, https://doi.org/10.1175/MWR-D-14-00004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pilon, R., C. Zhang, and J. Dudhia, 2016: Roles of deep and shallow convection and microphysics in the MJO simulated by the Model for Prediction Across Scales. J. Geophys. Res. Atmos., 121, 10 57510 600, https://doi.org/10.1002/2015JD024697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1968: Role of a tropical “maritime continent” in the atmospheric circulation. Mon. Wea. Rev., 96, 365370, https://doi.org/10.1175/1520-0493(1968)096<0365:ROATMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 21052132, https://doi.org/10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., 2015: Kelvin waves and tropical cyclogenesis: A global survey. Mon. Wea. Rev., 143, 39964011, https://doi.org/10.1175/MWR-D-15-0111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., and J. Molinari, 2011: Tropical cyclogenesis associated with Kelvin waves and the Madden–Julian oscillation. Mon. Wea. Rev., 139, 27232734, https://doi.org/10.1175/MWR-D-10-05060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, https://doi.org/10.1175/MWR-D-11-00215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., and T. Nitta, 1993: 3-5 day-period disturbances coupled with convection over the tropical Pacific Ocean. J. Meteor. Soc. Japan, 71, 221246, https://doi.org/10.2151/jmsj1965.71.2_221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trilaksono, N. J., S. Otsuka, and S. Yoden, 2012: A time-lagged ensemble simulation on the modulation of precipitation over West Java in January–February 2007. Mon. Wea. Rev., 140, 601616, https://doi.org/10.1175/MWR-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., C. D. Thorncroft, and M. A. Janiga, 2012: Atlantic tropical cyclogenesis: A three-way interaction between an African easterly wave, diurnally varying convection, and a convectively coupled atmospheric Kelvin wave. Mon. Wea. Rev., 140, 11081124, https://doi.org/10.1175/MWR-D-11-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2014: Evolution of ECMWF sub-seasonal forecast skill scores. Quart. J. Roy. Meteor. Soc., 140, 18891899, https://doi.org/10.1002/qj.2256.

  • Vitart, F., A. W. Robertson, and S2S Steering Group, 2015: Subseasonal to seasonal prediction: Linking weather and climate. Seamless Prediction of the earth system: From minutes to months, WMO-1156, WMO, 385401.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and R. Fu, 2007: The influence of Amazon rainfall on the Atlantic ITCZ through convectively coupled Kelvin waves. J. Climate, 20, 11881201, https://doi.org/10.1175/JCLI4061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled Kelvin waves. J. Atmos. Sci., 57, 613640, https://doi.org/10.1175/1520-0469(2000)057<0613:LSDFAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, C. J., and Coauthors, 2017: Potential applications of subseasonal-to-seasonal (S2S) predictions. Meteor. Appl., 24, 315325, https://doi.org/10.1002/met.1654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., M. Hara, H. Fudeyasu, M. D. Yamanaka, J. Matsumoto, F. Syamsudin, R. Sulistyowati, and Y. S. Djajadihardja, 2007: The impact of trans-equatorial monsoon flow on the formation of repeated torrential rains over Java island. SOLA, 3, 9396, https://doi.org/10.2151/SOLA.2007-024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanase, W., M. Satoh, H. Yamada, K. Yasunaga, and Q. Moteki, 2010: Continual influences of tropical waves on the genesis and rapid intensification of Typhoon Durian (2006). Geophys. Res. Lett., 37, L08809, https://doi.org/10.1029/2010GL042516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, https://doi.org/10.1175/BAMS-D-12-00157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513, https://doi.org/10.1175/MWR-D-10-05091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 153 0 0
Full Text Views 444 152 12
PDF Downloads 428 108 15