• Cai, M., S. Yang, H. van den Dool, and V. Kousky, 2007: Dynamical implications of the orientation of atmospheric eddies: A local energetics perspective. Tellus, 59A, 127140, https://doi.org/10.1111/j.1600-0870.2006.00213.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., Y. Zhang, and T. Li, 2000: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 43104325, https://doi.org/10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., Y. Ding, and N.-C. Lau, 2011: The Global Monsoon System: Research and Forecast. World Scientific, 594 pp.

    • Crossref
    • Export Citation
  • Chen, S. F., B. Yu, and W. Chen, 2014: An analysis on the physical process of the influence of AO on ENSO. Climate Dyn., 42, 973989, https://doi.org/10.1007/s00382-012-1654-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. F., W. Chen, and R. Wu, 2015: An interdecadal change in the relationship between boreal spring Arctic Oscillation and the East Asian summer monsoon around the early 1970s. J. Climate, 28, 15271542, https://doi.org/10.1175/JCLI-D-14-00409.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. F., W. Chen, and B. Yu, 2017: The influence of boreal spring Arctic oscillation on the subsequent winter ENSO in CMIP5 models. Climate Dyn., 48, 29492965, https://doi.org/10.1007/s00382-016-3243-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. F., R. Wu, and W. Chen, 2018a: Modulation of spring northern tropical Atlantic sea surface temperature on the El Niño–Southern Oscillation–East Asian summer monsoon connection. Int. J. Climatol., 38, 50205029, https://doi.org/10.1002/joc.5710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. F., R. Wu, and W. Chen, 2018b: A strengthened impact of November Arctic Oscillation on subsequent tropical Pacific sea surface temperature variation since the late-1970s. Climate Dyn., 51, 511529, https://doi.org/10.1007/s00382-017-3937-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, Q., and B. Tan, 2019: On the variation of the Pacific center: A revisit to the physical nature of Arctic Oscillation. Climate Dyn., 53, 12331243, https://doi.org/10.1007/s00382-018-4583-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, Y. W., and J. B. Ahn, 2019: Possible mechanisms for the coupling between late spring sea surface temperature anomalies over tropical Atlantic and East Asian summer monsoon. Climate Dyn., 53, 69957009, https://doi.org/10.1007/s00382-019-04970-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and et al. , 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Dai, P., and B. Tan, 2017: The nature of the Arctic Oscillation and diversity of the extreme surface weather anomalies it generates. J. Climate, 30, 55635584, https://doi.org/10.1175/JCLI-D-16-0467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S. Xie, and A. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, https://doi.org/10.1146/annurev-marine-120408-151453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere-Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-387+STR, 72 pp.

  • Di Lorenzo, E., and et al. , 2008: North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett., 35, L08607, https://doi.org/10.1029/2007GL032838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and et al. , 2009: Nutrient and salinity decadal variations in the central and eastern North Pacific. Geophys. Res. Lett., 36, L14601, https://doi.org/10.1029/2009GL038261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q. H., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, T., Y. Yuan, J. M. Zhang, and H. Gao, 2019: 2018: The hottest summer in China and possible causes. J. Meteor. Res., 33, 577592, https://doi.org/10.1007/s13351-019-8178-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y. H., 1994: Monsoons over China. Kluwer Academic, 420 pp.

  • Ding, Y. H., and D. R. Sikka, 2006: Synoptic systems and weather. The Asian Monsoon, B. Wang, Ed., Springer, 131–201.

    • Crossref
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., B. J. Wang, and S. Q. Xiong, 2000: Analysis on the abnormality of general circulation and sea temperature in relation to the flood water of Yangtze River in 1998. Resour. Environ. Yangtze Basin, 9, 112117, http://doi.org/10.3969/j.issn.1004-8227.2000.01.017.

    • Search Google Scholar
    • Export Citation
  • Gao, M. N., J. Yang, D.-Y. Gong, and S. J. Kim, 2014: Unstable relationship between spring Arctic Oscillation and East Asian summer monsoon. Int. J. Climatol., 34, 25222528, https://doi.org/10.1002/joc.3849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, M. N., J. Yang, D.-Y. Gong, H. He, and S. Kim, 2016: Spring Arctic oscillation–western North Pacific connection in CMIP5 models. Int. J. Climatol., 36, 20932102, https://doi.org/10.1002/joc.4486.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geng, X., W. J. Zhang, M. F. Stuecker, P. Liu, F. F. Jin, and G. R. Tan, 2017: Decadal modulation of the ENSO–East Asian winter monsoon relationship by the Atlantic multidecadal oscillation. Climate Dyn., 49, 25312544, https://doi.org/10.1007/s00382-016-3465-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., and C.-H. Ho, 2003: Arctic Oscillation signals in the East Asian summer monsoon. J. Geophys. Res., 108, 4066, https://doi.org/10.1029/2002JD002193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., J. Zhu, and S. Wang, 2002: Significant relationship between spring AO and the summer rainfall along the Yangtze River. Chin. Sci. Bull., 47, 948952, https://doi.org/10.1360/02tb9212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., J. Yang, S. J. Kim, Y. Q. Gao, D. Guo, T. J. Zhou, and M. Hu, 2011: Spring Arctic Oscillation–East Asian summer monsoon connection through circulation changes over the western North Pacific. Climate Dyn., 37, 21992216, https://doi.org/10.1007/s00382-011-1041-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2010: Elements of MOM4p1. GFDL Ocean Group Tech. Rep. 6, NOAA/Geophysical Fluid Dynamics Laboratory, 444 pp.

  • Honda, M., and H. Nakamura, 2001: Interannual seesaw between the Aleutian and Icelandic lows. Part II: Its significance in the interannual variability over the wintertime Northern Hemisphere. J. Climate, 14, 45124529, https://doi.org/10.1175/1520-0442(2001)014<4512:ISBTAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, M., D.-Y. Gong, and R. Mao, 2013: Possible influence of February–April Arctic Oscillation on the ITCZ activity of western-central Pacific (in Chinese). J. Trop. Meteor., 29, 5565.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and et al. , 2017: Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5), upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., and F. Sun, 1992: Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243256, https://doi.org/10.2151/jmsj1965.70.1B_243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., R. H. Zhang, and Q. Y. Zhang, 2000: The 1997/98 ENSO cycle and its impact on summer climate anomalies in East Asia. Adv. Atmos. Sci., 17, 348362, https://doi.org/10.1007/s00376-000-0028-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., J. L. Chen, L. T. Zhou, and Q. Y. Zhang, 2003: Studies on the relationship between the severe climatic disasters in China and the East Asia climate system. Chin. J. Atmos. Sci., 27, 770787.

    • Search Google Scholar
    • Export Citation
  • Huang, R., W. Chen, B. Yang, and R. Zhang, 2004: Recent advances in studies of the interaction between the East Asian winter and summer monsoons and ENSO cycle. Adv. Atmos. Sci., 21, 407424, https://doi.org/10.1007/BF02915568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., J. L. Chen, L. Wang, and Z. Lin, 2012: Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system. Adv. Atmos. Sci., 29, 910942, https://doi.org/10.1007/s00376-012-2015-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos Sea Ice Model user’s manual, version 4.1. Los Alamos National Laboratory Tech. Rep. LA-CC-06-012, 76 pp.

  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation. Science, 269, 676679, https://doi.org/10.1126/science.269.5224.676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and H. van Loon, 1997: Decadal variations in climate associated with the North Atlantic Oscillation. Climatic Change at High Elevation Sites, H. F. Diaz, M. Beniston, and R. Bradley, Eds., Springer, 69–94.

    • Crossref
    • Export Citation
  • Ji, D., and et al. , 2014: Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1. Geosci. Model Dev., 7, 20392064, https://doi.org/10.5194/gmd-7-2039-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joshi, M. K., and K. L. Ha, 2019: Fidelity of CMIP5-simulated teleconnection between Atlantic multidecadal oscillation and Indian summer monsoon rainfall. Climate Dyn., 52, 41574176, https://doi.org/10.1007/s00382-018-4376-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kavvada, A., A. Ruiz-Barradas, and S. Nigam, 2013: AMO’s structure and climate footprint in observations and IPCC AR5 climate simulations. Climate Dyn., 41, 13451364, https://doi.org/10.1007/s00382-013-1712-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841985, https://doi.org/10.1126/science.288.5473.1984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K., and H. Weng, 2001: Coherent modes of global SST and summer rainfall over China: An assessment of the regional impacts of the 1997–98 El Niño. J. Climate, 14, 12941308, https://doi.org/10.1175/1520-0442(2001)014<1294:CMOGSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N. C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 27182743, https://doi.org/10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C. Y., and et al. , 2009: The Study of Meteorological Disasters and Chinese Response (in Chinese). China Meteorological Press, 187 pp.

  • Li, F., Y. J. Orsolini, H. J. Wang, Y. Q. Gao, and S. P. He, 2018: Modulation of the Aleutian–Icelandic low seesaw and its surface impacts by the Atlantic multidecadal oscillation. Adv. Atmos. Sci., 35, 95105, https://doi.org/10.1007/s00376-017-7028-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S. L., L. R. Ji, W. T. Lin, and Y. Q. Ni, 2001: The maintenance of the blocking over the Ural Mountains during the second Meiyu period in the summer of 1998. Adv. Atmos. Sci., 18, 87105, https://doi.org/10.1007/s00376-001-0006-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., W. Zhou, and D. Chen, 2014: Water vapor transport and moisture budget over eastern China: Remote forcing from the two types of El Niño. J. Climate, 27, 87788792, https://doi.org/10.1175/JCLI-D-14-00049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 1999: Eddies and the annular modes of climate variability. Geophys. Res. Lett., 26, 31333136, https://doi.org/10.1029/1999GL010478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 2000: Wave-maintained annular modes of climate variability. J. Climate, 13, 44144429, https://doi.org/10.1175/1520-0442(2000)013<4414:WMAMOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2003: Eddy–zonal flow feedback in the Northern Hemisphere winter. J. Climate, 16, 12121227, https://doi.org/10.1175/1520-0442(2003)16<1212:EFFITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., 2002: Indices of the summertime western North Pacific subtropical high. Adv. Atmos. Sci., 19, 10041028, https://doi.org/10.1007/s00376-002-0061-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58, 3544, https://doi.org/10.1023/A:1015820616384.

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. Richter, S. Park, P. H. Lauritzen, S. J. Vavrus, P. J. Rasch, and M. Zhang, 2013: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26, 51505168, https://doi.org/10.1175/JCLI-D-12-00236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogi, M., Y. Tachibana, and K. Yamazaki, 2004: The connectivity of the winter North Atlantic Oscillation (NAO) and the summer Okhotsk high. J. Meteor. Soc. Japan, 82, 905913, https://doi.org/10.2151/jmsj.2004.905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., and T. Li, 2019: Interdecadal modulation of El Niño–tropical North Atlantic teleconnection by the Atlantic multi-decadal oscillation. Climate Dyn., 52, 53455360, https://doi.org/10.1007/s00382-018-4452-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., and G. Magnusdottir, 2014: Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic Ocean. Environ. Res. Lett., 9, 034018, https://doi.org/10.1088/1748-9326/9/3/034018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rong, X. Y., R. H. Zhang, and T. Li, 2010: Impacts of Atlantic sea surface temperature anomalies on Indo-East Asian summer monsoon–ENSO relationship. Chin. Sci. Bull., 55, 24582468, https://doi.org/10.1007/s11434-010-3098-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, N., and H. Nakamura, 2014: Multi-decadal modulations in the Aleutian-Icelandic low seesaw and the axial symmetry of the Arctic Oscillation signature, as revealed in the 20th century reanalysis. Tellus, 66A, 22660, https://doi.org/10.3402/tellusa.v66.22660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smoliak, B. V., and J. M. Wallace, 2015: On the leading patterns of Northern Hemisphere sea level pressure variability. J. Atmos. Sci., 72, 34693486, https://doi.org/10.1175/JAS-D-14-0371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., F. Kucharski, J. P. Li, F.-F. Jin, I.-S. Kang, and R. Q. Ding, 2017: Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat. Commun., 8, 15998, https://doi.org/10.1038/ncomms15998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and B. Tan, 2013: Mechanism of the wintertime Aleutian low–Icelandic low seesaw. Geophys. Res. Lett., 40, 41034108, https://doi.org/10.1002/grl.50770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, S., and L. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60–92.

  • Thompson, D. W., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, https://doi.org/10.1029/98GL00950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., S. Lee, and M. P. Baldwin, 2003: Atmospheric processes governing the Northern Hemisphere annular mode/North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, J. W. Hurrell, Eds., American Geophysical Union, 81–112.

    • Crossref
    • Export Citation
  • Wallace, J. M., and D. W. J. Thompson, 2002: The Pacific center of action of the Northern Hemisphere annular mode: Real or artifact? J. Climate, 15, 19871991, https://doi.org/10.1175/1520-0442(2002)015<1987:TPCOAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629638, https://doi.org/10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect EastAsian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., and L. Zhang, 2018: Analysis of the August 2018 atmosphere circulation and weather. Meteor. Mon., 44, 15011508.

  • Wang, Q., Y. H. Ding, and Y. Jiang, 1998: Relationship between Asian monsoon activities and the precipitation over China mainland (in Chinese). Quart. J. Appl. Meteor, 9, 8489.

    • Search Google Scholar
    • Export Citation
  • Wang, W., W. Zhou, and D. Chen, 2014: Summer high temperature extremes in southeast China: Bonding with the El Niño–Southern Oscillation and East Asian summer monsoon coupled system. J. Climate, 27, 41224138, https://doi.org/10.1175/JCLI-D-13-00545.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wegmann, M., Y. Orsolini, E. Dutra, O. Bulygina, A. Sterin, and S. Brönnimann, 2017: Eurasian snow depth in long-term climate reanalyses. Cryosphere, 11, 923935, https://doi.org/10.5194/tc-11-923-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2007: Observed relationship of spring and summer East Asian rainfall with winter and spring Eurasian snow. J. Climate, 20, 12851304, https://doi.org/10.1175/JCLI4068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., and L. Yu, 2016: Seasonal prediction of the East Asian summer monsoon with a partial-least square model. Climate Dyn., 46, 30673078, https://doi.org/10.1007/s00382-015-2753-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., B. Wang, J. Li, and F.-F. Jin, 2009: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, https://doi.org/10.1029/2009JD011733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B. Q., B. Wang, and T. Li, 2013: A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Climate Dyn., 41, 327340, https://doi.org/10.1007/s00382-012-1427-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S. P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y. M., S. An, B. Wang, and J. H. Park, 2019: A global-scale multidecadal variability driven by Atlantic multidecadal oscillation. Natl. Sci. Rev., https://doi.org/10.1093/nsr/nwz216, in press.

    • Search Google Scholar
    • Export Citation
  • Yuan, Y., H. Gao, and Y. J. Liu, 2017: Analysis of the characteristics and causes of precipitation anomalies over eastern China in the summer of 2016. Meteor. Mon., 43, 115121.

    • Search Google Scholar
    • Export Citation
  • Yuan, Y., H. Gao, and T. Ding, 2020: The extremely north position of the western Pacific subtropical high in summer of 2018: Important role of the convective activities in the western Pacific. Int. J. Climatol., 40, 13611374, https://doi.org/10.1002/joc.6274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, P., and et al. , 2016: The strong El Niño of 2015/16 and its dominant impacts on global and China’s climate. J. Meteor. Res., 30, 283297, https://doi.org/10.1007/s13351-016-6101-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q. Y., S. Y. Tao, and L. T. Chen, 2003: The interannual variability of East Asian summer monsoon indices and its association with the pattern of general circulation over East Asia (in Chinese). Acta Meteor. Sin., 61, 559568.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2007: Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett., 34, L23708, https://doi.org/10.1029/2007GL031601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the ’86/87 and ’91/92 events. J. Meteor. Soc. Japan, 74, 4962, https://doi.org/10.2151/jmsj1965.74.1_49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, P., Z. Zhou, and J. Liu, 2007: Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation and East Asian summer monsoon rainfall: An observational investigation. J. Climate, 20, 39423955, https://doi.org/10.1175/JCLI4205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, W., S. Chen, W. Chen, S. Yao, D. Nath, and B. Yu, 2019: Interannual variations of the rainy season withdrawal of the monsoon transitional zone in China. Climate Dyn., 53, 20312046, https://doi.org/10.1007/s00382-019-04762-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, P., L. Suo, J. Yuan, and B. Tan, 2012: The East Pacific wave train: Its variability and impact on the atmospheric circulation in the boreal winter. Adv. Atmos. Sci., 29, 471483, https://doi.org/10.1007/s00376-011-0216-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, J. Q., W. J. Li, C. H. Sun, L. Xu, and H. L. Ren, 2013: Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon. Adv. Atmos. Sci., 30, 11731186, https://doi.org/10.1007/s00376-012-2125-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, J. Q., W. J. Li, C. H. Sun, and H. C. Ren, 2019: Remote forcing of the northern tropical Atlantic SST anomalies on the western North Pacific anomalous anticyclone. Climate Dyn., 52, 28372853, https://doi.org/10.1007/s00382-018-4298-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 157 157 15
Full Text Views 63 63 11
PDF Downloads 68 68 9

Impacts of the Atlantic Multidecadal Oscillation on the Relationship of the Spring Arctic Oscillation and the Following East Asian Summer Monsoon

View More View Less
  • 1 Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
  • | 2 School of Earth Sciences, Zhejiang University, Hangzhou, and Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 3 Institute of Urban Meteorology, China Meteorological Administration, Beijing, China
© Get Permissions
Restricted access

Abstract

Previous studies indicated that spring Arctic Oscillation (AO) can influence the following East Asian summer monsoon (EASM). This study reveals that the Atlantic multidecadal oscillation (AMO) has a pronounced modulation of the spring AO–EASM connection. Spring AO has a close relation with the EASM during the negative AMO (−AMO) phase. However, during the positive AMO (+AMO) phase, the spring AO–EASM connection is weak. During the −AMO phase, a marked dipole atmospheric anomaly pattern (with an anticyclonic anomaly over the midlatitudes and a cyclonic anomaly over the subtropics) and a pronounced tripole sea surface temperature (SST) anomaly pattern is formed in the North Pacific during positive spring AO years. The cyclonic anomaly, SST, and precipitation anomalies over the subtropical western North Pacific (WNP) maintain and propagate southwestward in the following summer via a positive air–sea feedback, which further impacts the EASM variation. During the +AMO phase, the Pacific center of the spring AO (i.e., the anticyclonic anomaly over the midlatitudes) is weak. As such, the cyclonic anomaly cannot be induced over the subtropical WNP by the spring AO via wave–mean flow interaction. Hence, the spring AO–EASM connection disappears during the +AMO phase. The AMO impacts the Pacific center of the spring AO via modulating the Aleutian low intensity and North Pacific storm track intensity. The observed AMO modulation of the spring AO–EASM connection and Pacific center of the spring AO can be captured by the long historical simulation in a coupled global climate model.

Corresponding author: Dr. Shangfeng Chen, chenshangfeng@mail.iap.ac.cn

Abstract

Previous studies indicated that spring Arctic Oscillation (AO) can influence the following East Asian summer monsoon (EASM). This study reveals that the Atlantic multidecadal oscillation (AMO) has a pronounced modulation of the spring AO–EASM connection. Spring AO has a close relation with the EASM during the negative AMO (−AMO) phase. However, during the positive AMO (+AMO) phase, the spring AO–EASM connection is weak. During the −AMO phase, a marked dipole atmospheric anomaly pattern (with an anticyclonic anomaly over the midlatitudes and a cyclonic anomaly over the subtropics) and a pronounced tripole sea surface temperature (SST) anomaly pattern is formed in the North Pacific during positive spring AO years. The cyclonic anomaly, SST, and precipitation anomalies over the subtropical western North Pacific (WNP) maintain and propagate southwestward in the following summer via a positive air–sea feedback, which further impacts the EASM variation. During the +AMO phase, the Pacific center of the spring AO (i.e., the anticyclonic anomaly over the midlatitudes) is weak. As such, the cyclonic anomaly cannot be induced over the subtropical WNP by the spring AO via wave–mean flow interaction. Hence, the spring AO–EASM connection disappears during the +AMO phase. The AMO impacts the Pacific center of the spring AO via modulating the Aleutian low intensity and North Pacific storm track intensity. The observed AMO modulation of the spring AO–EASM connection and Pacific center of the spring AO can be captured by the long historical simulation in a coupled global climate model.

Corresponding author: Dr. Shangfeng Chen, chenshangfeng@mail.iap.ac.cn
Save