Dynamic Effect of Last Glacial Maximum Ice Sheet Topography on the East Asian Summer Monsoon

Yu Gao Laboratory for Climate and Ocean–Atmosphere Studies and Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, and Open studio for Ocean-Climate-Isotope Modeling, Pilot National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Yu Gao in
Current site
Google Scholar
PubMed
Close
,
Zhengyu Liu Department of Geography, Ohio State University, Columbus, Ohio

Search for other papers by Zhengyu Liu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4554-2666
, and
Zhengyao Lu Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden

Search for other papers by Zhengyao Lu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The effect of ice sheet topography on the East Asian summer monsoon (EASM) during the Last Glacial Maximum is studied using CCSM3 in a hierarchy of model configurations. It is found that receding ice sheets result in a weakened EASM, with the reduced ice sheet thickness playing a major role. The lower ice sheet topography weakens the EASM through shifting the position of the midlatitude jet, and through altering Northern Hemisphere stationary waves. In the jet shifting mechanism, the lowering of ice sheets shifts the westerly jet northward and decreases the westerly jet over the subtropics in summer, which reduces the advection of dry enthalpy and in turn precipitation over the EASM region. In the stationary wave mechanism, the lowering of ice sheets induces an anomalous stationary wave train along the westerly waveguide that propagates into the EASM region, generating an equivalent-barotropic low response; this leads to reduced lower-tropospheric southerlies, which in turn reduces the dry enthalpy advection into East Asia, and hence the EASM precipitation.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 29 July 2020 to correct the affiliation of the second author.

Corresponding authors: Yu Gao, yugao@pku.edu.cn; Zhengyu Liu, liu.7022@osu.edu.

Abstract

The effect of ice sheet topography on the East Asian summer monsoon (EASM) during the Last Glacial Maximum is studied using CCSM3 in a hierarchy of model configurations. It is found that receding ice sheets result in a weakened EASM, with the reduced ice sheet thickness playing a major role. The lower ice sheet topography weakens the EASM through shifting the position of the midlatitude jet, and through altering Northern Hemisphere stationary waves. In the jet shifting mechanism, the lowering of ice sheets shifts the westerly jet northward and decreases the westerly jet over the subtropics in summer, which reduces the advection of dry enthalpy and in turn precipitation over the EASM region. In the stationary wave mechanism, the lowering of ice sheets induces an anomalous stationary wave train along the westerly waveguide that propagates into the EASM region, generating an equivalent-barotropic low response; this leads to reduced lower-tropospheric southerlies, which in turn reduces the dry enthalpy advection into East Asia, and hence the EASM precipitation.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 29 July 2020 to correct the affiliation of the second author.

Corresponding authors: Yu Gao, yugao@pku.edu.cn; Zhengyu Liu, liu.7022@osu.edu.
Save
  • Abe-Ouchi, A., T. Segawa, and F. Saito, 2007: Climatic conditions for modelling the Northern Hemisphere ice sheets throughout the ice age cycle. Climate Past, 3, 423438, https://doi.org/10.5194/cp-3-423-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, P. M., and Coauthors, 1988: Climatic changes of the last 18,000 years: Observations and model simulations. Science, 241, 10431052, https://doi.org/10.1126/science.241.4869.1043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., and S. Bordoni, 2014: Orographic effects of the Tibetan Plateau on the East Asian summer monsoon: An energetic perspective. J. Climate, 27, 30523072, https://doi.org/10.1175/JCLI-D-13-00479.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, H., R. L. Edwards, W. S. Broecker, G. H. Denton, X. Kong, Y. Wang, R. Zhang, and X. Wang, 2009: Ice age terminations. Science, 326, 248252, https://doi.org/10.1126/science.1177840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25, 477496, https://doi.org/10.1007/s00382-005-0040-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., M. Biasutti, and D. S. Battisti, 2003: Sensitivity of the Atlantic intertropical convergence zone to last glacial maximum boundary conditions. Paleoceanography, 18, 1094, https://doi.org/10.1029/2003PA000916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and Coauthors, 2015: Role of seasonal transitions and westerly jets in East Asian paleoclimate. Quat. Sci. Rev., 108, 111129, https://doi.org/10.1016/j.quascirev.2014.11.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2003: Mechanisms limiting the northward extent of the northern summer monsoons over North America, Asia, and Africa. J. Climate, 16, 406425, https://doi.org/10.1175/1520-0442(2003)016<0406:MLTNEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, P. U., R. B. Alley, and D. Pollard, 1999: Northern Hemisphere ice-sheet influences on global climate change. Science, 286, 11041111, https://doi.org/10.1126/science.286.5442.1104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clemens, S. C., and W. L. Prell, 1990: Late Pleistocene variability of Arabian Sea summer monsoon winds and continental aridity: Eolian records from the lithogenic component of deep-sea sediments. Paleoceanography, 5, 109145, https://doi.org/10.1029/PA005i002p00109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clemens, S. C., and W. L. Prell, 2003: A 350,000 year summer-monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea. Mar. Geol., 201, 3551, https://doi.org/10.1016/S0025-3227(03)00207-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143, https://doi.org/10.1175/JCLI3761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eisenman, I., C. M. Bitz, and E. Tziperman, 2009: Rain driven by receding ice sheets as a cause of past climate change. Paleoceanography, 24, PA4209, https://doi.org/10.1029/2009PA001778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fallah, B., U. Cubasch, K. Prömmel, and S. Sodoudi, 2016: A numerical model study on the behaviour of Asian summer monsoon and AMOC due to orographic forcing of Tibetan Plateau. Climate Dyn., 47, 14851495, https://doi.org/10.1007/s00382-015-2914-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galbraith, E., and C. de Lavergne, 2019: Response of a comprehensive climate model to a broad range of external forcings: Relevance for deep ocean ventilation and the development of late Cenozoic ice ages. Climate Dyn., 52, 653679, https://doi.org/10.1007/s00382-018-4157-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, F., J. D. Shakun, P. U. Clark, A. E. Carlson, Z. Liu, B. L. Otto-Bliesner, and J. E. Kutzbach, 2013: Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation. Nature, 494, 8185, https://doi.org/10.1038/nature11822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofer, D., C. C. Raible, A. Dehnert, and J. Kuhlemann, 2012: The impact of different glacial boundary conditions on atmospheric dynamics and precipitation in the North Atlantic region. Climate Past, 8, 935949, https://doi.org/10.5194/cp-8-935-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klockmann, M., U. Mikolajewicz, and J. Marotzke, 2016: The effect of greenhouse gas concentrations and ice sheets on the glacial AMOC in a coupled climate model. Climate Past, 12, 18291846, https://doi.org/10.5194/cp-12-1829-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., 1981: Monsoon climate of the early Holocene: Climate experiment with the Earth’s orbital parameters for 9000 years ago. Science, 214, 5961, https://doi.org/10.1126/science.214.4516.59.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., and F. A. Street-Perrott, 1985: Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr BP. Nature, 317, 130134, https://doi.org/10.1038/317130a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S. Y., J. C. H. Chiang, and P. Chang, 2015: Tropical Pacific response to continental ice sheet topography. Climate Dyn., 44, 24292446, https://doi.org/10.1007/s00382-014-2162-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., and D. S. Battisti, 2008: Reduced Atlantic storminess during Last Glacial Maximum: Evidence from a coupled climate model. J. Climate, 21, 35613579, https://doi.org/10.1175/2007JCLI2166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., Z. Lu, X. Wen, B. L. Otto-Bliesner, A. Timmermann, and K. M. Cobb, 2014: Evolution and forcing mechanisms of El Niño over the past 21,000 years. Nature, 515, 550553, https://doi.org/10.1038/nature13963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löfverström, M., R. Caballero, J. Nilsson, and J. Kleman, 2014: Evolution of the large-scale atmospheric circulation in response to changing ice sheets over the last glacial cycle. Climate Past, 10, 14531471, https://doi.org/10.5194/cp-10-1453-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Z., Z. Liu, and J. Zhu, 2016: Abrupt intensification of ENSO forced by deglacial ice-sheet retreat in CCSM3. Climate Dyn., 46, 18771891, https://doi.org/10.1007/s00382-015-2681-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Z., Z. Liu, G. Chen, and J. Guan, 2019: Prominent precession band variance in ENSO intensity over the last 300,000 years. Geophys. Res. Lett., 46, 97869795, https://doi.org/10.1029/2019GL083410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and A. J. Broccoli, 1985: The influence of continental ice sheets on the climate of an ice age. J. Geophys. Res., 90, 21672190, https://doi.org/10.1029/JD090iD01p02167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molnar, P., W. R. Boos, and D. S. Battisti, 2010: Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci., 38, 77102, https://doi.org/10.1146/annurev-earth-040809-152456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 2007: Moist dynamics of tropical convection zones in monsoons, teleconnections and global warming. The Global Circulation of the Atmosphere, T. Schneider and A. Sobel, Eds., Princeton University Press, 267–301.

  • Overpeck, J., D. Anderson, S. Trumbore, and W. Prell, 1996: The southwest Indian monsoon over the last 18 000 years. Climate Dyn., 12, 213225, https://doi.org/10.1007/BF00211619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pausata, F. S. R., C. Li, J. J. Wettstein, M. Kageyama, and K. H. Nisancioglu, 2011: The key role of topography in altering North Atlantic atmospheric circulation during the last glacial period. Climate Past, 7, 10891101, https://doi.org/10.5194/cp-7-1089-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., 2004: Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci., 32, 111149, https://doi.org/10.1146/annurev.earth.32.082503.144359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petit, J. R., and Coauthors, 1999: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429436, https://doi.org/10.1038/20859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, W. H. G., C. Li, and P. J. Valdes, 2019: The mechanisms that determine the response of the Northern Hemisphere’s stationary waves to North American ice sheets. J. Climate, 32, 39173940, https://doi.org/10.1175/JCLI-D-18-0586.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruddiman, W. F., 2006: What is the timing of orbital-scale monsoon changes? Quat. Sci. Rev., 25, 657658, https://doi.org/10.1016/j.quascirev.2006.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampe, T., and S.-P. Xie, 2010: Large-scale dynamics of the meiyu-baiu rainband: Environmental forcing by the westerly jet. J. Climate, 23, 113134, https://doi.org/10.1175/2009JCLI3128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shackleton, N. J., 2000: The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science, 289, 18971902, https://doi.org/10.1126/science.289.5486.1897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherriff-Tadano, S., A. Abe-Ouchi, M. Yoshimori, A. Oka, and W.-L. Chan, 2018: Influence of glacial ice sheets on the Atlantic meridional overturning circulation through surface wind change. Climate Dyn., 50, 28812903, https://doi.org/10.1007/s00382-017-3780-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundaram, S., Q. Z. Yin, A. Berger, and H. Muri, 2012: Impact of ice sheet induced North Atlantic oscillation on East Asian summer monsoon during an interglacial 500,000 years ago. Climate Dyn., 39, 10931105, https://doi.org/10.1007/s00382-011-1213-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., 1994: Maintenance of northern summer stationary waves in a GCM. J. Atmos. Sci., 51, 32863308, https://doi.org/10.1175/1520-0469(1994)051<3286:MONSSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueda, H., M. Ohba, S.-P. Xie, H. Ueda, M. Ohba, and S.-P. Xie, 2009: Important factors for the development of the Asian–northwest Pacific summer monsoon. J. Climate, 22, 649669, https://doi.org/10.1175/2008JCLI2341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ullman, D. J., A. N. Legrande, A. E. Carlson, F. S. Anslow, and J. M. Licciardi, 2014: Assessing the impact of Laurentide Ice Sheet topography on glacial climate. Climate Past, 10, 487507, https://doi.org/10.5194/cp-10-487-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, X., Z. Liu, S. Wang, J. Cheng, and J. Zhu, 2016: Correlation and anti-correlation of the East Asian summer and winter monsoons during the last 21,000 years. Nat. Commun., 7, 11999, https://doi.org/10.1038/ncomms11999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, Q. Z., A. Berger, E. Driesschaert, H. Goosse, M. F. Loutre, and M. Crucifix, 2008: The Eurasian ice sheet reinforces the East Asian summer monsoon during the interglacial 500 000 years ago. Climate Past, 4, 7990, https://doi.org/10.5194/cp-4-79-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, Q. Z., A. Berger, and M. Crucifix, 2009: Individual and combined effects of ice sheets and precession on MIS-13 climate. Climate Past, 5, 229243, https://doi.org/10.5194/cp-5-229-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., G. Lohmann, G. Knorr, and C. Purcell, 2014: Abrupt glacial climate shifts controlled by ice sheet changes. Nature, 512, 290294, https://doi.org/10.1038/nature13592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., Z. Liu, X. Zhang, I. Eisenman, and W. Liu, 2014: Linear weakening of the AMOC in response to receding glacial ice sheets in CCSM3. Geophys. Res. Lett., 41, 62526258, https://doi.org/10.1002/2014GL060891.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 252 0 0
Full Text Views 1339 673 164
PDF Downloads 720 188 6