• An, S.-I., 2004: Interdecadal changes in the El Niño–La Niña asymmetry. Geophys. Res. Lett., 31, L23210, https://doi.org/10.1029/2004GL021699.

  • An, S.-I., 2009: A review of interdecadal changes in the nonlinearity of the El Niño–Southern Oscillation. Theor. Appl. Climatol., 97, 2940, https://doi.org/10.1007/s00704-008-0071-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, S.-I., and B. Wang, 2000: Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Climate, 13, 20442055, https://doi.org/10.1175/1520-0442(2000)013<2044:ICOTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, S.-I., and F.-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 23992412, https://doi.org/10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., S. Kida, and J. Hafner, 2010: Potential impact of the tropical Indian Ocean–Indonesian seas on El Niño characteristics. J. Climate, 23, 39333952, https://doi.org/10.1175/2010JCLI3396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atwood, A. R., D. S. Battisti, A. T. Wittenberg, W. Roberts, and D. J. Vimont, 2017: Characterizing unforced multi-decadal variability of ENSO: A case study with the GFDL CM2.1 coupled GCM. Climate Dyn., 49, 28452862, https://doi.org/10.1007/s00382-016-3477-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgers, G., and D. B. Stephenson, 1999: The “normality” of El Niño. Geophys. Res. Lett., 26, 10271030, https://doi.org/10.1029/1999GL900161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and P. D. Sardeshmukh, 2017: Is El Niño really changing? Geophys. Res. Lett., 44, 85488556, https://doi.org/10.1002/2017GL074515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., M. A. Alexander, and C. Deser, 2003: Why are there Rossby wave maxima in the Pacific at 10°S and 13°N? J. Phys. Oceanogr., 33, 15491563, https://doi.org/10.1175/2407.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., M. A. Alexander, C. Deser, and M. J. McPhaden, 2005: Anatomy and decadal evolution of the Pacific subtropical–tropical cells (STCs). J. Climate, 18, 37393758, https://doi.org/10.1175/JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and et al. , 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, P., and et al. , 2007: Pacific meridional mode and El Niño–Southern Oscillation. Geophys. Res. Lett., 34, L16608, https://doi.org/10.1029/2007GL030302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., T. Mochizuki, A. Timmermann, M. Kimoto, and M. Watanabe, 2016: Potential tropical Atlantic impacts on Pacific decadal climate trends. Geophys. Res. Lett., 43, 71437151, https://doi.org/10.1002/2016GL069544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J., S.-I. An, B. Dewitte, and W. W. Hsieh, 2009: Interactive feedback between the tropical Pacific decadal oscillation and ENSO in a coupled general circulation model. J. Climate, 22, 65976611, https://doi.org/10.1175/2009JCLI2782.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J., S.-I. An, and S.-W. Yeh, 2012: Decadal amplitude modulation of two types of ENSO and its relationship with the mean state. Climate Dyn., 38, 26312644, https://doi.org/10.1007/s00382-011-1186-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J., S.-I. An, S.-W. Yeh, and J.-Y. Yu, 2013: ENSO-like and ENSO-induced tropical Pacific decadal variability in CGCMs. J. Climate, 26, 14851501, https://doi.org/10.1175/JCLI-D-12-00118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cobb, K. M., C. D. Charles, H. Cheng, and R. L. Edwards, 2003: El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature, 424, 271276, https://doi.org/10.1038/nature01779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900. J. Climate, 17, 31093124, https://doi.org/10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewitte, B., S. Thual, S. Yeh, S. An, B. Moon, and B. Giese, 2009: Low-frequency variability of temperature in the vicinity of the equatorial Pacific thermocline in SODA: Role of equatorial wave dynamics and ENSO asymmetry. J. Climate, 22, 57835795, https://doi.org/10.1175/2009JCLI2764.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dommenget, D., T. Bayr, and C. Frauen, 2013: Analysis of the non-linearity in the pattern and time evolution of El Niño Southern Oscillation. Climate Dyn., 40, 28252847, https://doi.org/10.1007/s00382-012-1475-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graffino, G., R. Farneti, F. Kucharski, and F. Molteni, 2019: The effect of wind stress anomalies and location in driving Pacific subtropical cells and tropical climate. J. Climate, 32, 16411660, https://doi.org/10.1175/JCLI-D-18-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, D., and S. G. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805807, https://doi.org/10.1126/science.275.5301.805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-S. Kug, J.-Y. Park, and F.-F. Jin, 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112116, https://doi.org/10.1038/ngeo1686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., and et al. , 2014: Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Climate Dyn., 43, 13571379, https://doi.org/10.1007/s00382-013-1951-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and et al. , 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., S.-I. An, A. Timmermann, and J. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30, 1120, https://doi.org/10.1029/2002GL016356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, I. S., and J. S. Kug, 2002: El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies. J. Geophys. Res., 107, 4372, https://doi.org/10.1029/2001JD000393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karamperidou, C., F.-F. Jin, and J. L. Conroy, 2017: The importance of ENSO nonlinearities in tropical Pacific response to external forcing. Climate Dyn., 49, 26952704, https://doi.org/10.1007/s00382-016-3475-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J., and et al. , 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, https://doi.org/10.1038/nature12534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., and Y.-G. Ham, 2011: Are there two types of La Niña? Geophys. Res. Lett., 38, L16704, https://doi.org/10.1029/2011GL048237.

  • Latif, M., and T. P. Barnett, 1995: Interactions of the tropical oceans. J. Climate, 8, 952964, https://doi.org/10.1175/1520-0442(1995)008<0952:IOTTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., S.-P. Xie, E. R. Cook, G. Huang, R. D’Arrigo, F. Liu, J. Ma, and X.-T. Zheng, 2011: Interdecadal modulation of El Niño amplitude during the past millennium. Nat. Climate Change, 1, 114118, https://doi.org/10.1038/nclimate1086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., S.-P. Xie, S. T. Gille, and C. Yoo, 2016: Atlantic-induced pan-tropical climate change over the past three decades. Nat. Climate Change, 6, 275279, https://doi.org/10.1038/nclimate2840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., and T. Yamagata, 2001: Long-term El Niño–Southern Oscillation (ENSO)-like variation with special emphasis on the South Pacific. J. Geophys. Res., 106, 22 21122 227, https://doi.org/10.1029/2000JC000471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., R. Zhang, S. K. Behera, Y. Masumoto, F.-F. Jin, R. Lukas, and T. Yamagata, 2010: Interaction between El Niño and extreme Indian Ocean dipole. J. Climate, 23, 726742, https://doi.org/10.1175/2009JCLI3104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691080, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and D. Zhang, 2002: Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415, 603608, https://doi.org/10.1038/415603a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and A. Hu, 2006: Megadroughts in the Indian monsoon region and southwest North America and a mechanism for associated multidecadal Pacific sea surface temperature anomalies. J. Climate, 19, 16051623, https://doi.org/10.1175/JCLI3675.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and et al. , 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polade, S. D., A. Gershunov, D. R. Cayan, M. D. Dettinger, and D. W. Pierce, 2013: Natural climate variability and teleconnections to precipitation over the Pacific–North American region in CMIP3 and CMIP5 models. Geophys. Res. Lett., 40, 22962301, https://doi.org/10.1002/grl.50491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., and R. Colman, 2006: Multi-year predictability in a coupled general circulation model. Climate Dyn., 26, 247272, https://doi.org/10.1007/s00382-005-0055-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, https://doi.org/10.1007/s003820050284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., P. Friederichs, and M. Latif, 2004: Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J. Climate, 17, 37613774, https://doi.org/10.1175/1520-0442(2004)017<3761:TPDVAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, N., A. J. Miller, M. A. Alexander, and C. Deser, 1999: Subduction of decadal North Pacific temperature anomalies: Observations and dynamics. J. Phys. Oceanogr., 29, 10561070, https://doi.org/10.1175/1520-0485(1999)029<1056:SODNPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., and R. J. Burgman, 2006: A simple mechanism for ENSO residuals and asymmetry. J. Climate, 19, 31673179, https://doi.org/10.1175/JCLI3765.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, J., R. Zhang, T. Li, X. Rong, J. Kug, and C.-C. Hong, 2010: Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J. Climate, 23, 605617, https://doi.org/10.1175/2009JCLI2894.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D. Z., and T. Zhang, 2006: A regulatory effect of ENSO on the time-mean thermal stratification of the equatorial upper ocean. Geophys. Res. Lett., 33, L07710, https://doi.org/10.1029/2005GL025296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, F., and J.-Y. Yu, 2009: A 10–15-yr modulation cycle of ENSO intensity. J. Climate, 22, 17181735, https://doi.org/10.1175/2008JCLI2285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., 2003: Decadal ENSO amplitude modulations: A nonlinear paradigm. Global Planet. Change, 37, 135156, https://doi.org/10.1016/S0921-8181(02)00194-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and et al. , 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., and Z. Liu, 2000: The pathway of the interdecadal variability in the Pacific Ocean. Chin. Sci. Bull., 45, 15551561, https://doi.org/10.1007/BF02886211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and A. T. Wittenberg, 2012: A method for disentangling El Niño–mean state interaction. Geophys. Res. Lett., 39, L14702, https://doi.org/10.1029/2012GL052013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, https://doi.org/10.1029/2009GL038710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S. W., and B. P. Kirtman, 2004: Tropical Pacific decadal variability and ENSO amplitude modulation in a CGCM. J. Geophys. Res., 109, C11009, https://doi.org/10.1029/2004JC002442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 72 72 6
Full Text Views 18 18 0
PDF Downloads 32 32 0

Tropical Pacific Decadal Variability Induced by Nonlinear Rectification of El Niño–Southern Oscillation

View More View Less
  • 1 Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
© Get Permissions
Restricted access

Abstract

On the basis of 32 long-term simulations with state-of-the-art coupled GCMs, we investigate the relationship between tropical Pacific decadal variability (TPDV) and El Niño–Southern Oscillation (ENSO). The first empirical orthogonal function (EOF) mode for the 11-yr moving sea surface temperatures (SSTs) in the coupled models is commonly characterized by El Niño–like decadal variability with Bjerknes air–sea interaction. However, the second EOF mode can be separated into two groups, such that 1) some models have a zonal dipole SST pattern and 2) other models are characterized by a meridional dipole pattern. We found that models with the zonal dipole pattern in the second mode tend to simulate strong ENSO amplitude and asymmetry in comparison with those of the other models. Also, the residual patterns, which are defined as the summation of El Niño and La Niña SST composite anomalies, are very similar to the decadal dipole pattern, which suggests that ENSO residuals can cause the dipole decadal variability. It is found that decadal modulation of ENSO variability in these models strongly depends on the phase of the dipole decadal variability. The decadal changes in ENSO residual correspond well with the decadal changes in the dipole pattern, and the nonlinear dynamic heating terms by ENSO anomalies are well matched with the decadal dipole pattern.

Corresponding author: Jong-Seong Kug, jskug1@gmail.com

Abstract

On the basis of 32 long-term simulations with state-of-the-art coupled GCMs, we investigate the relationship between tropical Pacific decadal variability (TPDV) and El Niño–Southern Oscillation (ENSO). The first empirical orthogonal function (EOF) mode for the 11-yr moving sea surface temperatures (SSTs) in the coupled models is commonly characterized by El Niño–like decadal variability with Bjerknes air–sea interaction. However, the second EOF mode can be separated into two groups, such that 1) some models have a zonal dipole SST pattern and 2) other models are characterized by a meridional dipole pattern. We found that models with the zonal dipole pattern in the second mode tend to simulate strong ENSO amplitude and asymmetry in comparison with those of the other models. Also, the residual patterns, which are defined as the summation of El Niño and La Niña SST composite anomalies, are very similar to the decadal dipole pattern, which suggests that ENSO residuals can cause the dipole decadal variability. It is found that decadal modulation of ENSO variability in these models strongly depends on the phase of the dipole decadal variability. The decadal changes in ENSO residual correspond well with the decadal changes in the dipole pattern, and the nonlinear dynamic heating terms by ENSO anomalies are well matched with the decadal dipole pattern.

Corresponding author: Jong-Seong Kug, jskug1@gmail.com
Save