• Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., E. M. Fischer, J. Luterbacher, R. M. Trigo, and R. García-Herrera, 2011: The hot summer of 2010: Redrawing the temperature record map of Europe. Science, 332, 220224, https://doi.org/10.1126/science.1201224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basu, R., 2009: High ambient temperature and mortality: A review of epidemiologic studies from 2001 to 2008. Environ. Health, 8, 40, https://doi.org/10.1186/1476-069X-8-40.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bieli, M., S. Pfahl, and H. Wernli, 2015: A Lagrangian investigation of hot and cold temperature extremes in Europe. Quart. J. Roy. Meteor. Soc., 141, 98108, https://doi.org/10.1002/qj.2339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, https://doi.org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brodzik, M., and R. Armstrong, 2013: Northern Hemisphere EASE-Grid 2.0 weekly snow cover and sea ice extent, version 4. National Snow and Ice Data Center, accessed 21 May 2014, http://nsidc.org/data/nsidc-0046.

  • Cattiaux, J., R. Vautard, C. Cassou, P. Yiou, V. Masson-Delmotte, and F. Codron, 2010: Winter 2010 in Europe: A cold extreme in a warming climate. Geophys. Res. Lett., 37, L20704, https://doi.org/10.1029/2010GL044613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G. S., and R. H. Huang, 2012: Excitation mechanisms of the teleconnection patterns affecting the July precipitation in Northwest China. J. Climate, 25, 78347851, https://doi.org/10.1175/JCLI-D-11-00684.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., and R. Lu, 2015: Comparisons of the circulation anomalies associated with extreme heat in different regions of eastern China. J. Climate, 28, 58305844, https://doi.org/10.1175/JCLI-D-14-00818.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-F., R. Wu, and W. Chen, 2015: The changing relationship between interannual variations of the North Atlantic Oscillation and northern tropical Atlantic SST. J. Climate, 28, 485504, https://doi.org/10.1175/JCLI-D-14-00422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-F., R. Wu, and Y. Liu, 2016: Dominant modes of interannual variability in Eurasian surface air temperature during boreal spring. J. Climate, 29, 11091125, https://doi.org/10.1175/JCLI-D-15-0524.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-F., R. Wu, L. Song, and W. Chen, 2018a: Combined influences of the Arctic oscillation and the Scandinavia pattern on spring surface air temperature variations over Eurasia. J. Geophys. Res. Atmos., 123, 94109429, https://doi.org/10.1029/2018JD028685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-F., R. Wu, W. Chen, and S. Yao, 2018b: Enhanced linkage between Eurasian winter and spring dominant modes of atmospheric interannual variability since the early 1990s. J. Climate, 31, 35753595, https://doi.org/10.1175/JCLI-D-17-0525.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-F., R. Wu, L. Song, and W. Chen, 2019: Interannual variability of surface air temperature over mid-high latitudes of Eurasia during boreal autumn. Climate Dyn., 53, 18051821, https://doi.org/10.1007/s00382-019-04738-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-F., R. Wu, W. Chen, and B. Yu, 2020a: Recent weakening of the linkage between the spring Arctic Oscillation and the following winter El Niño-Southern Oscillation. Climate Dyn., 54, 5367, https://doi.org/10.1007/s00382-019-04988-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-F., R. Wu, and W. Chen, 2020b: Strengthened connection between springtime North Atlantic Oscillation and North Atlantic tripole SST pattern since the late 1980s. J. Climate, 33, 20072022, https://doi.org/10.1175/JCLI-D-19-0628.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., and et al. , 2016: Variation in summer surface air temperature over northeast Asia and its associated circulation anomalies. Adv. Atmos. Sci., 33, 19, https://doi.org/10.1007/S00376-015-5056-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., R. Wu, and Z. Wang, 2019: Impacts of summer North Atlantic sea surface temperature anomalies on the East Asian winter monsoon variability. J. Climate, 32, 65136532, https://doi.org/10.1175/JCLI-D-19-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherry, S., 1996: Singular value decomposition analysis and canonical correlation analysis. J. Climate, 9, 20032009, https://doi.org/10.1175/1520-0442(1996)009<2003:SVDAAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curtis, S., and S. Hastenrath, 1995: Forcing of anomalous sea surface temperature evolution in the tropical Atlantic during Pacific warm events. J. Geophys. Res., 100, 15 83515 847, https://doi.org/10.1029/95JC01502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 1999: Influence of the North Atlantic SST on the atmospheric circulation. Geophys. Res. Lett., 26, 29692972, https://doi.org/10.1029/1999GL900613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic oscillation. J. Climate, 15, 606623, https://doi.org/10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., A. W. Robertson, and T. Huck, 2003: The role of Atlantic ocean–atmosphere coupling in affecting North Atlantic Oscillation variability. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, J. W. Hurrell, Eds., Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 147–172.

    • Crossref
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, J., J. Liu, F. Tao, X. Xu, and J. Wang, 2009: Spatio-temporal changes in annual accumulated temperature in China and the effects on cropping systems, 1980 to 2000. Climate Res., 40, 3748, https://doi.org/10.3354/cr00823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunstone, N., and et al. , 2018: Skilful seasonal predictions of summer European rainfall. Geophys. Res. Lett., 45, 32463254, https://doi.org/10.1002/2017GL076337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Z., Z.-Z. Hu, B. Jha, S. Yang, J. Zhu, B. Shen, and R. Zhang, 2014: Variability and predictability of Northeast China climate during 1948–2012. Climate Dyn., 43, 787804, https://doi.org/10.1007/s00382-013-1944-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., S.-W. Wang, and J.-H. Zhu, 2001: East Asian winter monsoon and Arctic Oscillation. Geophys. Res. Lett., 28, 20732076, https://doi.org/10.1029/2000GL012311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., Y.-Z. Pan, and J.-A. Wang, 2004: Changes in extreme daily mean temperatures in summer in eastern China during 1955–2000. Theor. Appl. Climatol., 77, 2537, https://doi.org/10.1007/s00704-003-0019-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., and et al. , 2017: Heat wave and mortality: A multicountry, multicommunity study. Environ. Health Perspect., 125, 087006, https://doi.org/10.1289/EHP1026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, S.-P., H. Wang, Y. Gao, and F. Li, 2019: Recent intensified impact of December Arctic Oscillation on subsequent January temperature in Eurasia and North Africa. Climate Dyn., 52, 10771094, https://doi.org/10.1007/s00382-018-4182-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodson, D. L. R., R. T. Sutton, C. Cassou, N. Keenlyside, Y. Okumura, and T. J. Zhou, 2010: Climate impacts of recent multidecadal changes in Atlantic Ocean sea surface temperature: A multimodel comparison. Climate Dyn., 34, 10411058, https://doi.org/10.1007/s00382-009-0571-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Q., and S. Feng, 2004: A role of the soil enthalpy in land memory. J. Climate, 17, 36333643, https://doi.org/10.1175/1520-0442(2004)017<3633:AROTSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., and B. Huang, 2006: On the significance of the relationship between the North Atlantic Oscillation in early winter and Atlantic sea surface temperature anomalies. J. Geophys. Res., 111, D12103, https://doi.org/10.1029/2005JD006339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and J. Shukla, 2005: Ocean–atmosphere interactions in the tropical and subtropical Atlantic Ocean. J. Climate, 18, 16521672, https://doi.org/10.1175/JCLI3368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and et al. , 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and H. van Loon, 1997: Decadal variations in climate associated with the North Atlantic Oscillation. Climatic Change at High Elevation Sites, H. F. Diaz, M. Beniston, and R. Bradley, Eds., Springer, 69–94.

    • Crossref
    • Export Citation
  • IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 3–29.

  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., L. Stefanova, and V. Misra, 2013: Tropical Meteorology: An Introduction. Springer-Verlag, 424 pp., https://doi.org/10.1007/978-1-4614-7409-8.

    • Crossref
    • Export Citation
  • Kysely, J., and J. Kim, 2009: Mortality during heat waves in South Korea, 1991 to 2005: How exceptional was the 1994 heat wave? Climate Res., 38, 105116, https://doi.org/10.3354/cr00775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsueda, M., 2011: Predictability of Euro-Russian blocking in summer of 2010. Geophys. Res. Lett., 38, L06801, https://doi.org/10.1029/2010GL046557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuura, K., and C. J. Willmott, 2009: Terrestrial air temperature: 1900–2008 gridded monthly time series, version 5.01. Department of Geography Center for Climatic Research, University of Delaware, accessed 23 October 2019, http://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html.

  • Miyazaki, C., and T. Yasunari, 2008: Dominant interannual and decadal variability of winter surface air temperature over Asia and the surrounding oceans. J. Climate, 21, 13711386, https://doi.org/10.1175/2007JCLI1845.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monerie, P., J. Robson, B. Dong, and N. Dunstone, 2018: A role of the Atlantic Ocean in predicting summer surface air temperature over North East Asia? Climate Dyn., 51, 473491, https://doi.org/10.1007/s00382-017-3935-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, T., K. Yamazaki, T. Sato, and J. Ukita, 2019: Memory effects of Eurasian land processes cause enhanced cooling in response to sea ice loss. Nat. Commun., 10, 5111, https://doi.org/10.1038/s41467-019-13124-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogi, M., Y. Tachibana, and K. Yamazaki, 2003: Impact of the wintertime North Atlantic Oscillation (NAO) on the summertime atmospheric circulation. Geophys. Res. Lett., 30, 1704, https://doi.org/10.1029/2003GL017280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogi, M., K. Yamazaki, and Y. Tachibana, 2004: The summertime annular mode in the Northern Hemisphere and its linkage to the winter mode. J. Geophys. Res., 109, D20114, https://doi.org/10.1029/2004JD004514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., T. Woollings, and L. Zanna, 2018: The impact of tropical precipitation on summertime Euro-Atlantic circulation via a circumglobal wave train. J. Climate, 31, 64816504, https://doi.org/10.1175/JCLI-D-17-0451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otomi, Y., Y. Tachibana, and T. Nakamura, 2013: A possible cause of the AO polarity reversal from winter to summer in 2010 and its relation to hemispheric extreme summer weather. Climate Dyn., 40, 19391947, https://doi.org/10.1007/s00382-012-1386-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, L.-L., 2005: Observed positive feedback between the NAO and the North Atlantic SSTA tripole. Geophys. Res. Lett., 32, L06707, https://doi.org/10.1029/2005GL022427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and S. Li, 2003: Mechanisms for the NAO responses to the North Atlantic SST tripole. J. Climate, 16, 19872004, https://doi.org/10.1175/1520-0442(2003)016<1987:MFTNRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and C. K. Folland, 2002: Atlantic air–sea interaction and seasonal predictability. Quart. J. Roy. Meteor. Soc., 128, 14131443, https://doi.org/10.1002/qj.200212858302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A., and et al. , 2017: Tropical rainfall, Rossby waves and regional winter climate predictions. Quart. J. Roy. Meteor. Soc., 143, 111, https://doi.org/10.1002/qj.2910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stott, P. A., D. A. Stone, and M. R. Allen, 2004: Human contribution to the European heatwave of 2003. Nature, 432, 610614, https://doi.org/10.1038/nature03089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., J. P. Li, and S. Zhao, 2015: Remote influence of Atlantic multidecadal variability on Siberian warm season precipitation. Sci. Rep., 5, 16853, https://doi.org/10.1038/srep16853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, https://doi.org/10.1029/98GL00950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M. F., 1996: Steady linear response to tropical heating in barotropic and baroclinic models. J. Atmos. Sci., 53, 16981709, https://doi.org/10.1175/1520-0469(1996)053<1698:SLRTTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Visbeck, M., E. Chassignet, R. Curry, and T. Delworth, 2003: The ocean’s response to North Atlantic variability. The North Atlantic Oscillation, J. Hurrell et al., Eds., Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 113–145.

    • Crossref
    • Export Citation
  • Von Storch, H., and F. Z. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp., https://doi.org/10.1017/CBO9780511612336.

    • Crossref
    • Export Citation
  • Wallace, J. M., C. Smith, and C. S. Bretherton, 1992: Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Climate, 5, 561576, https://doi.org/10.1175/1520-0442(1992)005<0561:SVDOWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Z.-W. Wu, C.-P. Chang, J. Liu, J.-P. Li, and T.-J. Zhou, 2010: Another look at interannual-to-interdecadal variations of the East Asian winter monsoon: The northern and southern temperature modes. J. Climate, 23, 14951512, https://doi.org/10.1175/2009JCLI3243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., and et al. , 2009: A preliminary analysis of features and causes of the snow storm event over the southern areas of China in January 2008. J. Meteor. Res., 23, 374384.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., 2004: Asian jet waveguide and a downstream extension of the North Atlantic Oscillation. J. Climate, 17, 46744691, https://doi.org/10.1175/JCLI-3228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., and J. Wang, 2002: Winter Arctic Oscillation, Siberian high and East Asian winter monsoon. Geophys. Res. Lett., 29, 1897, https://doi.org/10.1029/2002GL015373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and Z. Liu, 2005: North Atlantic decadal variability: Air–sea coupling, oceanic memory, and potential Northern Hemisphere resonance. J. Climate, 18, 331349, https://doi.org/10.1175/JCLI-3264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and S. Chen, 2016: Regional change in snow water equivalent–surface air temperature relationship over Eurasia during boreal spring. Climate Dyn., 47, 24252442, https://doi.org/10.1007/s00382-015-2972-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., S. Yang, S. Liu, L. Sun, Y. Lian, and Z. Gao, 2011: Northeast China summer temperature and North Atlantic SST. J. Geophys. Res., 116, D16116, https://doi.org/10.1029/2011JD015779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., B. Wang, J. Li, and F.-F. Jin, 2009: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, https://doi.org/10.1029/2009JD011733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K., R. Lu, J. Mao, and R. Chen, 2019: Circulation anomalies in the mid–high latitudes responsible for the extremely hot summer of 2018 over northeast Asia. Atmos. Oceanic Sci. Lett., 12, 231237, https://doi.org/10.1080/16742834.2019.1617626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, X., R. Wolff, W. Yu, P. Vaneckova, X. Pan, and S. Tong, 2012: Ambient temperature and morbidity: A review of epidemiological evidence. Environ. Health Perspect., 120, 1928, https://doi.org/10.1289/ehp.1003198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R.-N., C. Sun, R.-H. Zhang, W.-J. Li, and J. Zuo, 2019: Role of Eurasian snow cover in linking winter-spring Eurasian coldness to the autumn Arctic sea ice retreat. J. Geophys. Res. Atmos., 124, 92059221, https://doi.org/10.1029/2019JD030339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, W., S.-F. Chen, W. Chen, S. Yao, D. Nath, and B. Yu, 2019: Interannual variations of the rainy season withdrawal of the monsoon transitional zone in China. Climate Dyn., 53, 20312046, https://doi.org/10.1007/s00382-019-04762-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, W., J. Chan, W. Chen, J. Ling, J. Pinto, and Y. Shao, 2009: Synoptic-scale controls of persistent low temperature and icy weather over southern China in January 2008. Mon. Wea. Rev., 137, 39783991, https://doi.org/10.1175/2009MWR2952.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, C., B. Wang, W. Qian, and B. Zhang, 2012: Recent weakening of northern East Asian summer monsoon: A possible response to global warming. Geophys. Res. Lett., 39, L09701, https://doi.org/10.1029/2012GL051155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, J., W. Li, C. Sun, L. Xu, and H. Ren, 2013: Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon. Adv. Atmos. Sci., 30, 11731186, https://doi.org/10.1007/s00376-012-2125-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zveryaev, I. I., and S. K. Gulev, 2009: Seasonality in secular changes and interannual variability of European air temperature during the twentieth century. J. Geophys. Res., 114, D02110, https://doi.org/10.1029/2008JD010624.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 88 88 4
Full Text Views 32 32 9
PDF Downloads 43 43 13

Why Does a Colder (Warmer) Winter Tend to Be Followed by a Warmer (Cooler) Summer over Northeast Eurasia?

View More View Less
  • 1 Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 2 School of Earth Sciences, Zhejiang University, Hangzhou, and Center for Monsoon System Research, and State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 3 Center for Monsoon System Research, and State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 4 Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

This study reveals a pronounced out-of-phase relationship between surface air temperature (SAT) anomalies over northeast Eurasia in boreal winter and the following summer during 1980–2017. A colder (warmer) winter over northeast Eurasia tends to be followed by a warmer (cooler) summer of next year. The processes for the out-of-phase relation of winter and summer SAT involve the Arctic Oscillation (AO), the air–sea interaction in the North Atlantic Ocean, and a Eurasian anomalous atmospheric circulation pattern induced by the North Atlantic sea surface temperature (SST) anomalies. Winter negative AO/North Atlantic Oscillation (NAO)-like atmospheric circulation anomalies lead to continental cooling over Eurasia via anomalous advection and a tripolar SST anomaly pattern in the North Atlantic. The North Atlantic SST anomaly pattern switches to a dipolar pattern in the following summer via air–sea interaction processes and associated surface heat flux changes. The summer North Atlantic dipolar SST anomaly pattern induces a downstream atmospheric wave train, including large-scale positive geopotential height anomalies over northeast Eurasia, which contributes to positive SAT anomalies there via enhancement of downward surface shortwave radiation and anomalous advection. Barotropic model experiments verify the role of the summer North Atlantic SST anomalies in triggering the atmospheric wave train over Eurasia. Through the above processes, a colder winter is followed by a warmer summer over northeast Eurasia. The above processes apply to the years when warmer winters are followed by cooler summers except for opposite signs of SAT, atmospheric circulation, and SST anomalies.

Corresponding author: Renguang Wu, renguang@zju.edu.cn

Abstract

This study reveals a pronounced out-of-phase relationship between surface air temperature (SAT) anomalies over northeast Eurasia in boreal winter and the following summer during 1980–2017. A colder (warmer) winter over northeast Eurasia tends to be followed by a warmer (cooler) summer of next year. The processes for the out-of-phase relation of winter and summer SAT involve the Arctic Oscillation (AO), the air–sea interaction in the North Atlantic Ocean, and a Eurasian anomalous atmospheric circulation pattern induced by the North Atlantic sea surface temperature (SST) anomalies. Winter negative AO/North Atlantic Oscillation (NAO)-like atmospheric circulation anomalies lead to continental cooling over Eurasia via anomalous advection and a tripolar SST anomaly pattern in the North Atlantic. The North Atlantic SST anomaly pattern switches to a dipolar pattern in the following summer via air–sea interaction processes and associated surface heat flux changes. The summer North Atlantic dipolar SST anomaly pattern induces a downstream atmospheric wave train, including large-scale positive geopotential height anomalies over northeast Eurasia, which contributes to positive SAT anomalies there via enhancement of downward surface shortwave radiation and anomalous advection. Barotropic model experiments verify the role of the summer North Atlantic SST anomalies in triggering the atmospheric wave train over Eurasia. Through the above processes, a colder winter is followed by a warmer summer over northeast Eurasia. The above processes apply to the years when warmer winters are followed by cooler summers except for opposite signs of SAT, atmospheric circulation, and SST anomalies.

Corresponding author: Renguang Wu, renguang@zju.edu.cn
Save