• Acero, J. A., J. Arrizabalaga, S. Kupski, and L. Katzschner, 2013: Urban heat island in a coastal urban area in northern Spain. Theor. Appl. Climatol., 113, 137154, https://doi.org/10.1007/s00704-012-0774-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agarwal, M., and A. Tandon, 2010: Modeling of the urban heat island in the form of mesoscale wind and of its effect on air pollution dispersal. Appl. Math. Modell., 34, 25202530, https://doi.org/10.1016/j.apm.2009.11.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, L., F. Lindberg, and C. S. B. Grimmond, 2011: Global to city scale urban anthropogenic heat flux: Model and variability. Int. J. Climatol., 31, 19902005, https://doi.org/10.1002/joc.2210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Argüeso, D., J. P. Evans, L. Fita, and K. J. Bormann, 2014: Temperature response to future urbanization and climate change. Climate Dyn., 42, 21832199, https://doi.org/10.1007/s00382-013-1789-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basara, J. B., H. G. Basara, B. G. Illston, and K. C. Crawford, 2010: The impact of the urban heat island during an intense heat wave in Oklahoma City. Adv. Meteor., 2010, 110, https://doi.org/10.1155/2010/230365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, M. J., 2005: Representing urban areas within operational numerical weather prediction models. Bound.-Layer Meteor., 114, 91109, https://doi.org/10.1007/s10546-004-4834-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, M. J., and et al. , 2011: The Joint UK Land Environment Simulator (JULES), model description—Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677699, https://doi.org/10.5194/gmd-4-677-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., J. P. Mulcahy, T. Andrews, K. D. Williams, M. A. Ringer, P. R. Field, and G. S. Elsaesser, 2019: Strong dependence of atmospheric feedbacks on mixed-phase microphysics and aerosol–cloud interactions in HadGEM3. J. Adv. Model. Earth Syst., 11, 17351758, https://doi.org/10.1029/2019MS001688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohnenstengel, S. I., S. Evans, P. A. Clark, and S. E. Belcher, 2011: Simulations of the London urban heat island. Quart. J. Roy. Meteor. Soc., 137, 16251640, https://doi.org/10.1002/qj.855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohnenstengel, S. I., I. Hamilton, M. Davies, and S. E. Belcher, 2014: Impact of anthropogenic heat emissions on London’s temperatures. Quart. J. Roy. Meteor. Soc., 140, 687698, https://doi.org/10.1002/qj.2144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, S., J. E. Watson, A. Salazar, M. Thatcher, and C. A. McAlpine, 2017: The impact of urbanization and climate change on urban temperatures: A systematic review. Landsc. Ecol., 32, 19211935, https://doi.org/10.1007/s10980-017-0561-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cowtan, K., and R. G. Way, 2014: Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Quart. J. Roy. Meteor. Soc., 140, 19351944, https://doi.org/10.1002/qj.2297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, Y. Y., and B. De Foy, 2012: Seasonal variations of the urban heat island at the surface and the near-surface and reductions due to urban vegetation in Mexico City. J. Appl. Meteor. Climatol., 51, 855868, https://doi.org/10.1175/JAMC-D-11-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufresne, J. L., and et al. , 2013: Climate change projections using the IPSL-CM5 Earth system model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, https://doi.org/10.1007/s00382-012-1636-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erell, E., and T. Williamson, 2007: Intra-urban differences in canopy layer air temperature at a mid-latitude city. Int. J. Climatol., 27, 12431255, https://doi.org/10.1002/joc.1469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fallmann, J., R. Forkel, and S. Emeis, 2016: Secondary effects of urban heat island mitigation measures on air quality. Atmos. Environ., 125, 199211, https://doi.org/10.1016/j.atmosenv.2015.10.094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fenner, D., A. Holtmann, F. Meier, I. Langer, and D. Scherer, 2019: Contrasting changes of urban heat island intensity during hot weather episodes. Environ. Res. Lett., 14, 124013, https://doi.org/10.1088/1748-9326/ab506b.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and C. Schär, 2010: Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci., 3, 398403, https://doi.org/10.1038/ngeo866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., K. W. Oleson, and D. M. Lawrence, 2012: Contrasting urban and rural heat stress responses to climate change. Geophys. Res. Lett., 39, L03705, https://doi.org/10.1029/2011GL050576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., and et al. , 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst., 5, 572597, https://doi.org/10.1002/jame.20038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonçalves, A., G. Ornellas, A. C. Ribeiro, F. Maia, A. Rocha, and M. Feliciano, 2018: Urban cold and heat island in the city of Bragança (Portugal). Climate, 6 (3), 114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grize, L., A. Huss, O. Thommen, C. Schindler, and C. Braun-Fahrländer, 2005: Heat wave 2003 and mortality in Switzerland. Swiss Med. Wkly., 135, 200205.

    • Search Google Scholar
    • Export Citation
  • Grossman-Clarke, S., S. Schubert, and D. Fenner, 2017: Urban effects on summertime air temperature in Germany under climate change. Int. J. Climatol., 37, 905917, https://doi.org/10.1002/joc.4748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamdi, R., H. Van de Vyver, R. De Troch, and P. Termonia, 2014: Assessment of three dynamical urban climate downscaling methods: Brussels’s future urban heat island under an A1B emission scenario. Int. J. Climatol., 34, 978999, https://doi.org/10.1002/joc.3734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamdi, R., O. Giot, R. De Troch, A. Deckmyn, and P. Termonia, 2015: Future climate of Brussels and Paris for the 2050s under the A1B scenario. Urban Climate, 12, 160182, https://doi.org/10.1016/j.uclim.2015.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heaviside, C., X. M. Cai, and S. Vardoulakis, 2015: The effects of horizontal advection on the urban heat island in Birmingham and the West Midlands, United Kingdom during a heatwave. Quart. J. Roy. Meteor. Soc., 141, 14291441, https://doi.org/10.1002/qj.2452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heaviside, C., S. Vardoulakis, and X.-M. Cai, 2016: Attribution of mortality to the urban heat island during heatwaves in the West Midlands, UK. Environ. Health, 15, S27, https://doi.org/10.1186/s12940-016-0100-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollis, D., M. McCarthy, M. Kendon, T. Legg, and I. Simpson, 2019: HadUK-Grid—A new UK dataset of gridded climate observations. Geosci. Data J., 6, 151159, https://doi.org/10.1002/gdj3.78.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2018: Summary for policymakers. Global Warming of 1.5°C: An IPCC Special Report, V. Masson-Delmotte et al., Eds., World Meteorological Organization, 1–33, https://www.ipcc.ch/sr15/chapter/spm/.

  • Jacob, D., and et al. , 2012: Assessing the transferability of the regional climate model REMO to different Coordinated Regional Climate Downscaling Experiment (CORDEX) regions. Atmosphere, 3, 181199, https://doi.org/10.3390/atmos3010181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacob, D., and et al. , 2014: EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Change, 14, 563578, https://doi.org/10.1007/s10113-013-0499-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C. D., and et al. , 2011: The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev., 4, 543570, https://doi.org/10.5194/gmd-4-543-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E., and et al. , 2019: UKCP convection-permitting model projections: Science report. Met Office Tech. Rep., 153 pp.

  • Kershaw, T., M. Sanderson, D. Coley, and M. Eames, 2010: Estimation of the urban heat island for UK climate change projections. Build. Serv. Eng. Res. Tech., 31, 251263, https://doi.org/10.1177/0143624410365033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, A. D., and et al. , 2015: The timing of anthropogenic emergence in simulated climate extremes. Environ. Res. Lett., 10, 094015, https://doi.org/10.1088/1748-9326/10/9/094015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauwaet, D., H. Hooyberghs, B. Maiheu, W. Lefebvre, G. Driesen, S. Van Looy, and K. De Ridder, 2015: Detailed urban heat island projections for cities worldwide: Dynamical downscaling CMIP5 global climate models. Climate, 3, 391415, https://doi.org/10.3390/cli3020391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauwaet, D., K. De Ridder, S. Saeed, E. Brisson, F. Chatterjee, N. P. van Lipzig, B. Maiheu, and H. Hooyberghs, 2016: Assessing the current and future urban heat island of Brussels. Urban Climate, 15, 115, https://doi.org/10.1016/j.uclim.2015.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D. O., 1979: The influence of atmospheric stability and the urban heat island on urban–rural wind speed differences. Atmos. Environ., 13, 11751180, https://doi.org/10.1016/0004-6981(79)90042-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemonsu, A., R. Kounkou-Arnaud, J. Desplat, J. L. Salagnac, and V. Masson, 2013: Evolution of the Parisian urban climate under a global changing climate. Climatic Change, 116, 679692, https://doi.org/10.1007/s10584-012-0521-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levermore, G., J. Parkinson, K. Lee, P. Laycock, and S. Lindley, 2018: The increasing trend of the urban heat island intensity. Urban Climate, 24, 360368, https://doi.org/10.1016/j.uclim.2017.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Libert, J. P., J. Di Nisi, H. Fukuda, A. Muzet, J. Ehrhart, and C. Amoros, 1988: Effect of continuous heat exposure on sleep stages in humans. Sleep, 11, 195209, https://doi.org/10.1093/sleep/11.2.195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, Y. T. E., and et al. , 2019: Increasing mitigation ambition to meet the Paris Agreement’s temperature goal avoids substantial heat-related mortality in U.S. cities. Sci. Adv., 5, eaau4373, https://doi.org/10.1126/sciadv.aau4373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magee, N., J. Curtis, and G. Wendler, 1999: The urban heat island effect at Fairbanks, Alaska. Theor. Appl. Climatol., 64, 3947, https://doi.org/10.1007/s007040050109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., G. Hegerl, and S. Solomon, 2012: Emerging local warming signals in observational data. Geophys. Res. Lett., 39, L21711, https://doi.org/10.1029/2012GL053952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, M. P., C. Harpham, C. M. Goodess, and P. D. Jones, 2012: Simulating climate change in UK cities using a regional climate model, HadRM3. Int. J. Climatol., 32, 18751888, https://doi.org/10.1002/joc.2402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Memon, R. A., D. Y. Leung, and C. H. Liu, 2009: An investigation of urban heat island intensity (UHII) as an indicator of urban heating. Atmos. Res., 94, 491500, https://doi.org/10.1016/j.atmosres.2009.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, https://doi.org/10.1029/2011JD017187.

    • Search Google Scholar
    • Export Citation
  • Murphy, J., and et al. , 2009: UK Climate Projections Science Report: Climate change projections. Met Office Hadley Centre Tech. Rep., 190 pp.

  • Murphy, J., and et al. , 2018: UKCP18 land projections: Science report. Met Office Tech. Rep., 191 pp., https://www.metoffice.gov.uk/pub/data/weather/uk/ukcp18/science-reports/UKCP18-Land-report.pdf.

  • Office for National Statistics, 2013: 2011 built-up areas—Methodology and guidance. U.K. Office for National Statistics Tech. Rep., 15 pp.

  • Oke, T. R., 1987: Boundary Layer Climates. 2nd ed. Taylor and Francis, 464 pp.

  • Oleson, K., 2012: Contrasts between urban and rural climate in CCSM4 CMIP5 climate change scenarios. J. Climate, 25, 13901412, https://doi.org/10.1175/JCLI-D-11-00098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oleson, K., G. B. Bonan, J. Feddema, and T. Jackson, 2011: An examination of urban heat island characteristics in a global climate model. Int. J. Climatol., 31, 18481865, https://doi.org/10.1002/joc.2201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porson, A., P. A. Clark, I. N. Harman, M. J. Best, and S. E. Belcher, 2010: Implementation of a new urban energy budget scheme in the MetUM. Part I: Description and idealized simulations. Quart. J. Roy. Meteor. Soc., 136, 15141529, https://doi.org/10.1002/qj.668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rainham, D. G., and K. E. Smoyer-Tomic, 2003: The role of air pollution in the relationship between a heat stress index and human mortality in Toronto. Environ. Res., 93, 919, https://doi.org/10.1016/S0013-9351(03)00060-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogelj, J., and et al. , 2016: Paris Agreement climate proposals need a boost to keep warming well below 2°C. Nature, 534, 631639, https://doi.org/10.1038/nature18307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sachindra, D. A., A. W. Ng, S. Muthukumaran, and B. J. Perera, 2016: Impact of climate change on urban heat island effect and extreme temperatures: A case-study. Quart. J. Roy. Meteor. Soc., 142, 172186, https://doi.org/10.1002/qj.2642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarrat, C., A. Lemonsu, V. Masson, and D. Guedalia, 2006: Impact of urban heat island on regional atmospheric pollution. Atmos. Environ., 40, 17431758, https://doi.org/10.1016/j.atmosenv.2005.11.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlünzen, K. H., and S. I. Bohnenstengel, 2016: Socio-economic impacts—Urban climate. North Sea Region Climate Change Assessment, Springer International, 417–429, https://doi.org/10.1007/978-3-319-39745-0_15.

    • Crossref
    • Export Citation
  • Smith, C. L., A. Webb, G. J. Levermore, S. J. Lindley, and K. Beswick, 2011: Fine-scale spatial temperature patterns across a UK conurbation. Climatic Change, 109, 269286, https://doi.org/10.1007/s10584-011-0021-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suomi, J., and J. Käyhkö, 2012: The impact of environmental factors on urban temperature variability in the coastal city of Turku, SW Finland. Int. J. Climatol., 32, 451463, https://doi.org/10.1002/joc.2277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., and et al. , 2010: The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeor., 54, 7584, https://doi.org/10.1007/s00484-009-0256-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theeuwes, N. E., G. J. Steeneveld, R. J. Ronda, M. W. Rotach, and A. A. Holtslag, 2015: Cool city mornings by urban heat. Environ. Res. Lett., 10, 114022, https://doi.org/10.1088/1748-9326/10/11/114022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UN DESA, 2018: 68% of the world population projected to live in urban areas by 2050, says UN. United Nations Department of Economic and Social Affairs, accessed 2019, https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html.

  • UN DESA/Population Division, 2018: World Urbanization Prospects 2018—Country profiles. United Nations Department of Economic and Social Affairs, accessed 2019, https://population.un.org/wup/Country-Profiles/.

  • UNFCCC, 2015: Adoption of the Paris agreement. United Nations Framework Convention on Climate Change Doc., 32 pp.

  • Vicedo-Cabrera, A. M., and et al. , 2018: Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios. Climatic Change, 150, 391402, https://doi.org/10.1007/s10584-018-2274-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vukovich, F. M., W. J. King, J. W. Dunn III, and J. J. B. Worth, 1979: Observations and simulations of the diurnal variation of the urban heat island circulation and associated variations of the ozone distribution: A case study. J. Appl. Meteor., 18, 836854, https://doi.org/10.1175/1520-0450(1979)018<0836:OASOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., 2003: Past and projected trends in London’s urban heat island. Weather, 58, 251260, https://doi.org/10.1256/wea.183.02.

  • Wilby, R. L., 2008: Constructing climate change scenarios of urban heat island intensity and air quality. Environ. Plann., 35B, 902919, https://doi.org/10.1068/b33066t.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamamoto, Y., 2006: Measures to mitigate urban heat islands. Quart. Rev. DC Nurses Assoc., 18, 6583.

  • Yang, X., Y. Li, Z. Luo, and P. W. Chan, 2017: The urban cool island phenomenon in a high-rise high-density city and its mechanisms. Int. J. Climatol., 37, 890904, https://doi.org/10.1002/joc.4747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, N., X. Wang, and Z. Peng, 2014: Large-eddy simulation of mesoscale circulations forced by inhomogeneous urban heat island. Bound.-Layer Meteor., 151, 179194, https://doi.org/10.1007/s10546-013-9879-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 939 939 43
Full Text Views 179 179 10
PDF Downloads 180 180 12

U.K. Climate Projections: Summer Daytime and Nighttime Urban Heat Island Changes in England’s Major Cities

View More View Less
  • 1 School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
  • | 2 MetOffice@Reading, Department of Meteorology, University of Reading, Reading, United Kingdom
  • | 3 College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
  • | 4 National Centre for Atmospheric Science, University of Reading, Reading, United Kingdom
  • | 5 Department of Meteorology, University of Reading, Reading, United Kingdom
  • | 6 School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
  • | 7 Climatic Research Unit, School of Environmental Sciences, University of East Anglia, United Kingdom
  • | 8 Met Office Hadley Centre, Exeter, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

In the United Kingdom, where 90% of residents are projected to live in urban areas by 2050, projecting changes in urban heat islands (UHIs) is essential to municipal adaptation. Increased summer temperatures are linked to increased mortality. Using the new regional U.K. Climate Projections, UKCP18-regional, we estimate the 1981–2079 trends in summer urban and rural near-surface air temperatures and in UHI intensities during day and at night in the 10 most populous built-up areas in England. Summer temperatures increase by 0.45°–0.81°C per decade under RCP8.5, depending on the time of day and location. Nighttime temperatures increase more in urban than rural areas, enhancing the nighttime UHI by 0.01°–0.05°C per decade in all cities. When these upward UHI signals emerge from 2008–18 variability, positive summer nighttime UHI intensities of up to 1.8°C are projected in most cities. However, we can prevent most of these upward nighttime UHI signals from emerging by stabilizing climate to the Paris Agreement target of 2°C above preindustrial levels. In contrast, daytime UHI intensities decrease in nine cities, at rates between −0.004° and −0.05°C per decade, indicating a trend toward a reduced daytime UHI effect. These changes reflect different feedbacks over urban and rural areas and are specific to UKCP18-regional. Future research is important to better understand the drivers of these UHI intensity changes.

Corresponding author: Y. T. Eunice Lo, eunice.lo@bristol.ac.uk

Abstract

In the United Kingdom, where 90% of residents are projected to live in urban areas by 2050, projecting changes in urban heat islands (UHIs) is essential to municipal adaptation. Increased summer temperatures are linked to increased mortality. Using the new regional U.K. Climate Projections, UKCP18-regional, we estimate the 1981–2079 trends in summer urban and rural near-surface air temperatures and in UHI intensities during day and at night in the 10 most populous built-up areas in England. Summer temperatures increase by 0.45°–0.81°C per decade under RCP8.5, depending on the time of day and location. Nighttime temperatures increase more in urban than rural areas, enhancing the nighttime UHI by 0.01°–0.05°C per decade in all cities. When these upward UHI signals emerge from 2008–18 variability, positive summer nighttime UHI intensities of up to 1.8°C are projected in most cities. However, we can prevent most of these upward nighttime UHI signals from emerging by stabilizing climate to the Paris Agreement target of 2°C above preindustrial levels. In contrast, daytime UHI intensities decrease in nine cities, at rates between −0.004° and −0.05°C per decade, indicating a trend toward a reduced daytime UHI effect. These changes reflect different feedbacks over urban and rural areas and are specific to UKCP18-regional. Future research is important to better understand the drivers of these UHI intensity changes.

Corresponding author: Y. T. Eunice Lo, eunice.lo@bristol.ac.uk
Save