• Abraham, J. P., and et al. , 2013: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys., 51, 450483, https://doi.org/10.1002/rog.20022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Argo, 2000: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC). SEANOE, accessed August 2018, https://doi.org/10.17882/42182.

    • Crossref
    • Export Citation
  • Balmaseda, M. A., and et al. , 2015: The Ocean Reanalyses Intercomparison Project (ORA-IP). J. Oper. Oceanogr., 8, S80S97, https://doi.org/10.1080/1755876x.2015.1022329.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396409, https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., S. Levitus, J. I. Antonov, R. A. Locarnini, and H. E. Garcia, 2005: Linear trends in salinity for the World Ocean, 1955–1998. Geophys. Res. Lett., 32, L01604, https://doi.org/10.1029/2004GL021791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and et al. , 2016: Sensitivity of global upper-ocean heat content estimates to mapping methods, XBT bias corrections, and baseline climatologies. J. Climate, 29, 48174842, https://doi.org/10.1175/JCLI-D-15-0801.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and et al. , 2018: World Ocean Database 2018. A. Mishonov, Technical Ed., NOAA Atlas NESDIS 87, https://data.nodc.noaa.gov/woa/WOD/DOC/wod_intro.pdf.

  • Buckley, M. W., and J. Marshall, 2016: Observations, inferences, and mechanisms of the Atlantic meridional overturning circulation: A review. Rev. Geophys., 54, 563, https://doi.org/10.1002/2015RG000493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cabanes, C., and et al. , 2013: The CORA dataset: Validation and diagnostics of in-situ ocean temperature and salinity measurements. Ocean Sci., 9, 118, https://doi.org/10.5194/os-9-1-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, Y.-S., S. Zhang, A. Rosati, T. L. Delworth, and W. F. Stern, 2013: An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation. Climate Dyn., 40, 775803, https://doi.org/10.1007/s00382-012-1412-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, R., B. Dickson, and I. Yashayaev, 2003: A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature, 426, 826829, https://doi.org/10.1038/nature02206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domingues, C., J. Church, N. White, P. Gleckler, S. Wijffels, P. Barker, and J. Dunn, 2008: Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453, 10901093, https://doi.org/10.1038/nature07080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, C., J. C. McWilliams, Y. Liu, and D. Chen, 2014: Global heat and salt transports by eddy movement. Nat. Commun., 5, 3294, https://doi.org/10.1038/ncomms4294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., 2015: Ocean salinity and the global water cycle. Oceanography, 28, 2031, https://doi.org/10.5670/oceanog.2015.03.

  • Durack, P. J., and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 43424362, https://doi.org/10.1175/2010JCLI3377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., S. E. Wijffels, and R. J. Matear, 2012: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455458, https://doi.org/10.1126/science.1212222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., S. E. Wijffels, and P. J. Gleckler, 2014: Long-term sea-level change revisited: The role of salinity. Environ. Res. Lett., 9, 114017, https://doi.org/10.1088/1748-9326/9/11/114017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., C. Boening, F. W. Landerer, and R. S. Nerem, 2013: Australia’s unique influence on global sea level in 2010–2011. Geophys. Res. Lett., 40, 43684373, https://doi.org/10.1002/grl.50834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., S. A. Grodsky, J. A. Carton, and M. J. McPhaden, 2004: Seasonal salt budget of the northwestern tropical Atlantic Ocean along 38°W. J. Geophys. Res., 109, C03052, https://doi.org/10.1029/2003JC002111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giglio, D., and G. C. Johnson, 2016: Subantarctic and polar fronts of the Antarctic Circumpolar Current and Southern Ocean heat and freshwater content variability: A view from Argo. J. Phys. Oceanogr., 46, 749768, https://doi.org/10.1175/JPO-D-15-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giglio, D., and G. C. Johnson, 2017: Middepth decadal warming and freshening in the South Atlantic. J. Geophys. Res. Oceans, 122, 973979, https://doi.org/10.1002/2016JC012246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, https://doi.org/10.1002/2013jc009067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hackert, E., J. Ballabrera-Poy, A. J. Busalacchi, R. H. Zhang, and R. Murtugudde, 2011: Impact of sea surface salinity assimilation on coupled forecasts in the tropical Pacific. J. Geophys. Res., 116, C05009, https://doi.org/10.1029/2010JC006708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haumann, F., and et al. , 2016: Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature, 537, 8992, https://doi.org/10.1038/nature19101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helm, K. P., N. L. Bindoff, and J. A. Church, 2010: Changes in the global hydrological-cycle inferred from ocean salinity. Geophys. Res. Lett., 37, L18701, https://doi.org/10.1029/2010GL044222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosoda, S., T. Ohira, and T. Nakamura, 2008: A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep. Res. Dev., 8, 4759, https://doi.org/10.5918/jamstecr.8.47.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosoda, S., T. Suga, N. Shikama, and K. Mizuno, 2009: Global surface layer salinity change detected by Argo and its implication for hydrological cycle intensification. J. Oceanogr., 65, 579586, https://doi.org/10.1007/s10872-009-0049-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., Y. Xue, and D. W. Behringer, 2008: Impacts of Argo salinity in NCEP Global Ocean Data Assimilation System: The tropical Indian Ocean. J. Geophys. Res., 113, C08002, https://doi.org/10.1029/2007JC004388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPRC, 2019: IPRC products based on Argo data. International Pacific Research Center, accessed 26 April 2019, http://apdrc.soest.hawaii.edu/projects/argo/.

  • Ishii, M., and M. Kimoto, 2009: Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr., 65, 287299, https://doi.org/10.1007/s10872-009-0027-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., D. Roemmich, N. Zilberman, S. C. Riser, K. S. Johnson, G. C. Johnson, and S. R. Piotrowicz, 2017: The Argo program present and future. Oceanography, 30, 1828, https://doi.org/10.5670/oceanog.2017.213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., J. M. Lyman, and S. G. Purkey, 2015: Informing deep Argo array design using Argo and full-depth hydrographic section data. J. Atmos. Oceanic Technol., 32, 21872198, https://doi.org/10.1175/JTECH-D-15-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolodziejczyk, N., P.-M. Annaig, and G. Fabienne, 2017: ISAS-15 temperature and salinity gridded fields. SEANOE, accessed March 2019, https://doi.org/10.17882/52367.

    • Crossref
    • Export Citation
  • Kosempa, M., and D. P. Chambers, 2016: Mapping error in Southern Ocean transport computed from satellite altimetry and Argo. J. Geophys. Res. Oceans, 121, 80638076, https://doi.org/10.1002/2016JC011956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., 2016: Consistency of Aquarius sea surface salinity with Argo products on various spatial and temporal scales. Geophys. Res. Lett., 43, 38573864, https://doi.org/10.1002/2016GL068822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. I. Antonov, T. P. Boyer, H. E. Garcia, and R. A. Locarnini, 2005: Linear trends of zonally averaged thermosteric, halosteric, and total steric sea level for individual ocean basins and the world ocean, (1955–1959)–(1994–1998). Geophys. Res. Lett., 32, L16601, https://doi.org/10.1029/2005GL023761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., and et al. , 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106.

    • Search Google Scholar
    • Export Citation
  • Li, G., Y. Zhang, J. Xiao, X. Song, J. Abraham, L. Cheng, and J. Zhu, 2019: Examining the salinity change in the upper Pacific Ocean during the Argo period. Climate Dyn., 53, 60556074, https://doi.org/10.1007/s00382-019-04912-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., F. H. Xu, W. Zhou, D. X. Wang, J. S. Wright, Z. H. Liu, and Y. L. Lin, 2017: Development of a global gridded Argo data set with Barnes successive corrections. J. Geophys. Res. Oceans, 122, 866889, https://doi.org/10.1002/2016JC012285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and et al. , 2019: Vertical redistribution of salt and layered changes in global ocean salinity. Nat. Commun., 10, 3445, https://doi.org/10.1038/s41467-019-11436-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llovel, W., and T. Lee, 2015: Importance and origin of halosteric contribution to sea level change in the southeast Indian Ocean during 2005–2013. Geophys. Res. Lett., 42, 11481157, https://doi.org/10.1002/2014GL062611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llovel, W., B. Meyssignac, and A. Cazenave, 2011: Steric sea level variations over 2004.2010 as a function of region and depth: Inference on the mass component variability in the North Atlantic Ocean. Geophys. Res. Lett., 38, L15608, https://doi.org/10.1029/2011GL047411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llovel, W., and et al. , 2019: Global ocean freshening, ocean mass increase and global mean sea level rise over 2005–2015. Sci. Rep., 9, 17717, https://doi.org/10.1038/s41598-019-54239-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A., and et al. , 2009: Beaufort Gyre freshwater reservoir: State and variability from observations. J. Geophys. Res., 114, C00A10, https://doi.org/10.1029/2008JC005104.

    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., G. C. Johnson, and D. P. Chambers, 2014: Relative contributions of ocean mass and deep steric changes to sea level rise between 1993 and 2013. J. Geophys. Res. Oceans, 119, 75097522, https://doi.org/10.1002/2014JC010180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, R. R., and R. Sivakumar, 2003: Seasonal variability of sea surface salinity and salt budget of the mixed layer of the North Indian Ocean. J. Geophys. Res., 108, 3009, https://doi.org/10.1029/2001JC000907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riser, S. C., and et al. , 2016: Fifteen years of ocean observations with the global Argo array. Nat. Climate Change, 6, 145153, https://doi.org/10.1038/nclimate2872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robson, J., P. Ortega, and R. Sutton, 2016: A reversal of climatic trends in the North Atlantic since 2005. Nat. Geosci., 9, 513517, https://doi.org/10.1038/ngeo2727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr., 82, 81100, https://doi.org/10.1016/j.pocean.2009.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and et al. , 2009: The Argo Program: Observing the global ocean with profiling floats. Oceanography, 22, 3443, https://doi.org/10.5670/oceanog.2009.36.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and et al. , 2019: On the future of Argo: A global, full-depth, multi-disciplinary array. Front. Mar. Sci., 6, 439, https://doi.org/10.3389/fmars.2019.00439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 2008: Salinity and the global water cycle. Oceanography, 21, 1219, https://doi.org/10.5670/oceanog.2008.63.

  • Schroeder, K., and et al. , 2016: Abrupt climate shift in the western Mediterranean Sea. Sci. Rep., 6, 23009, https://doi.org/10.1038/srep23009.

  • Shi, L., and et al. , 2017: An assessment of upper ocean salinity content from the Ocean Reanalyses Intercomparison Project (ORA-IP). Climate Dyn., 49, 10091029, https://doi.org/10.1007/s00382-015-2868-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skliris, N., and et al. , 2014: Salinity changes in the World Ocean since 1950 in relation to changing surface freshwater fluxes. Climate Dyn., 43, 709736, https://doi.org/10.1007/s00382-014-2131-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stendardo, I., M. Rhein, and R. Hollmann, 2016: A high resolution salinity time series 1993–2012 in the North Atlantic from Argo and altimeter data. J. Geophys. Res. Oceans, 121, 25232551, https://doi.org/10.1002/2015JC011439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storto, A., and et al. , 2017: Steric sea level variability (1993–2010) in an ensemble of ocean reanalyses and objective analyses. Climate Dyn., 49, 709729, https://doi.org/10.1007/s00382-015-2554-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tesdal, J. E., R. P. Abernathey, J. I. Goes, A. L. Gordon, and T. W. Haine, 2018: Salinity trends within the upper layers of the subpolar North Atlantic. J. Climate, 31, 26752698, https://doi.org/10.1175/JCLI-D-17-0532.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, P. R., C. G. Piecuch, M. A. Merrifield, J. P. McCreary, and E. Firing, 2016: Forcing of recent decadal variability in the equatorial and north Indian Ocean. J. Geophys. Res. Oceans, 121, 67626778, https://doi.org/10.1002/2016JC012132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toyoda, T., and et al. , 2017: Intercomparison and validation of the mixed layer depth fields of global ocean syntheses. Climate Dyn., 49, 753773, https://doi.org/10.1007/s00382-015-2637-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, K. von Schuckmann, and L. Cheng, 2016: Insights into Earth’s energy imbalance from multiple sources. J. Climate, 29, 74957505, https://doi.org/10.1175/JCLI-D-16-0339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinogradova, N. T., and R. M. Ponte, 2017: In search of fingerprints of the recent intensification of the ocean water cycle. J. Climate, 30, 55135528, https://doi.org/10.1175/JCLI-D-16-0626.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinogradova, N. T., and et al. , 2019: Satellite salinity observing system: Recent discoveries and the way forward. Front. Mar. Sci., 6, 243, https://doi.org/10.3389/fmars.2019.00243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voelker, A. H. L., S. M. Lebreiro, J. Schönfeld, I. Cacho, H. Erlenkeuser, and F. Abrantes, 2006: Mediterranean outflow strengthening during northern hemisphere coolings: A salt source for the glacial Atlantic? Earth Planet. Sci. Lett., 245, 3955, https://doi.org/10.1016/j.epsl.2006.03.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Schuckmann, K., and P. Y. Le Traon, 2011: How well can we derive global ocean indicators from Argo data? Ocean Sci., 7, 783791, https://doi.org/10.5194/os-7-783-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G. J., L. J. Cheng, T. Boyer, and C. Y. Li, 2017: Halosteric sea level changes during the Argo era. Water, 9, 484, https://doi.org/10.3390/w9070484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G. J., L. Cheng, J. Abraham, and C. Li, 2018: Consensuses and discrepancies of basin-scale ocean heat content changes in different ocean analyses. Climate Dyn., 50, 24712487, https://doi.org/10.1007/s00382-017-3751-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijffels, S., and et al. , 2016: Ocean temperatures chronicle the ongoing warming of Earth. Nat. Climate Change, 6, 116118, https://doi.org/10.1038/nclimate2924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., and et al. , 2012: A comparative analysis of upper-ocean heat content variability from an ensemble of operational ocean reanalyses. J. Climate, 25, 69056929, https://doi.org/10.1175/JCLI-D-11-00542.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., and et al. , 2017: A real-time ocean reanalyses intercomparison project in the context of tropical Pacific observing system and ENSO monitoring. Climate Dyn., 49, 36473672, https://doi.org/10.1007/s00382-017-3535-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L. S., 2011: A global relationship between the ocean water cycle and near-surface salinity. J. Geophys. Res., 116, C10025, https://doi.org/10.1029/2010JC006937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and et al. , 2019: A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev. Geophys., 57, 316375, https://doi.org/10.1029/2019RG000644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., H. H. Hendon, Y. H. Yin, and O. Alves, 2016: Variations of upper-ocean salinity associated with ENSO from PEODAS reanalyses. J. Climate, 29, 20772094, https://doi.org/10.1175/JCLI-D-15-0650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, F., and R. H. Zhang, 2015: Interannually varying salinity effects on ENSO in the tropical Pacific: A diagnostic analysis from Argo. Ocean Dyn., 65, 691705, https://doi.org/10.1007/s10236-015-0829-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J. S., B. H. Huang, R. H. Zhang, Z. Z. Hu, A. Kumar, M. A. Balmaseda, L. Marx, and J. L. Kinter, 2014: Salinity anomaly as a trigger for ENSO events. Sci. Rep., 4, 6821, https://doi.org/10.1038/srep06821.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 205 205 26
Full Text Views 61 61 14
PDF Downloads 78 78 19

Global Patterns of Spatial and Temporal Variability in Salinity from Multiple Gridded Argo Products

View More View Less
  • 1 School of Marine Science and Policy, University of Delaware, Lewes, Delaware
  • | 2 College of Marine Science, University of South Florida, St. Petersburg, Florida
  • | 3 Atmospheric and Environmental Research, Lexington, Massachusetts
© Get Permissions
Restricted access

Abstract

Salinity is one of the fundamental ocean state variables and has been used to infer important information about climate change and variability. Previous studies have found inconsistent salinity variations in various objective ocean analyses that are based on the Argo measurements. However, as far as we are aware, a comprehensive assessment of those inconsistencies, as well as robust spatial and temporal features of salinity variability among the Argo-based products, has not been conducted. Here we compare and evaluate ocean salinity variability from five objective ocean analyses that are solely or primarily based on Argo measurements for their overlapping period from 2005 to 2015. We examine the salinity variability at the sea surface and within two depth intervals (0–700 and 700–2000 m). Our results show that the climatological mean is generally consistent among all examined products, although regional discrepancies are evident in the subsurface ocean. The time evolution, vertical structure, and leading EOF modes of salinity variations show good agreement among most of the examined products, indicating that a number of robust features of the salinity variability can be obtained by examining gridded Argo products. However, significant discrepancies in these variations exist, particularly in the subsurface North Atlantic and Southern Oceans. Also, despite the increasing number of Argo floats deployed in the ocean, the discrepancies were not significantly reduced over time. Our analyses, particularly those of the discrepancies between products, can serve as a useful reference for utilizing and improving the existing objective ocean analyses that are based on Argo measurements.

Corresponding author: Chao Liu, chaoliu@udel.edu

Abstract

Salinity is one of the fundamental ocean state variables and has been used to infer important information about climate change and variability. Previous studies have found inconsistent salinity variations in various objective ocean analyses that are based on the Argo measurements. However, as far as we are aware, a comprehensive assessment of those inconsistencies, as well as robust spatial and temporal features of salinity variability among the Argo-based products, has not been conducted. Here we compare and evaluate ocean salinity variability from five objective ocean analyses that are solely or primarily based on Argo measurements for their overlapping period from 2005 to 2015. We examine the salinity variability at the sea surface and within two depth intervals (0–700 and 700–2000 m). Our results show that the climatological mean is generally consistent among all examined products, although regional discrepancies are evident in the subsurface ocean. The time evolution, vertical structure, and leading EOF modes of salinity variations show good agreement among most of the examined products, indicating that a number of robust features of the salinity variability can be obtained by examining gridded Argo products. However, significant discrepancies in these variations exist, particularly in the subsurface North Atlantic and Southern Oceans. Also, despite the increasing number of Argo floats deployed in the ocean, the discrepancies were not significantly reduced over time. Our analyses, particularly those of the discrepancies between products, can serve as a useful reference for utilizing and improving the existing objective ocean analyses that are based on Argo measurements.

Corresponding author: Chao Liu, chaoliu@udel.edu
Save