• Alory, G., S. Wijffels, and G. Meyers, 2007: Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys. Res. Lett., 34, L02606, https://doi.org/10.1029/2006GL028044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, https://doi.org/10.1029/2001JD000776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, https://doi.org/10.1175/JCLI4282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., M. C. Wheeler, and A. H. Sobel, 2009: Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J. Atmos. Sci., 66, 30613074, https://doi.org/10.1175/2009JAS3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, X., S. Chen, G. Chen, and R. Wu, 2016: Intensified impact of northern tropical Atlantic SST on tropical cyclogenesis frequency over the western North Pacific after the late 1980s. Adv. Atmos. Sci., 33, 919930, https://doi.org/10.1007/s00376-016-5206-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caron, L.-P., and C. G. Jones, 2008: Analysing present, past and future tropical cyclone activity as inferred from an ensemble of coupled global climate models. Tellus, 60A, 8096, https://doi.org/10.1111/j.1600-0870.2007.00291.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. A. Chepurin, and L. Chen, 2018: SODA3: A new ocean climate reanalysis. J. Climate, 31, 69676983, https://doi.org/10.1175/JCLI-D-18-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2005: Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteor. Atmos. Phys., 89, 143152, https://doi.org/10.1007/s00703-005-0126-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, J.-H., C. R. Sampson, A. S. Levine, and E. Fukada, 2002: The Joint Typhoon Warning Center tropical cyclone best-tracks, 1945–2000. Ref. NRL/MR/7540-02, 16 pp.

  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, https://doi.org/10.1175/WAF862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, https://doi.org/10.1175/BAMS-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., and T. Zhou, 2014: The Indian Ocean sea surface temperature warming simulated by CMIP5 models during the twentieth century: Competing forcing roles of GHGs and anthropogenic aerosols. J. Climate, 27, 33483362, https://doi.org/10.1175/JCLI-D-13-00396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., and S.-P. Xie, 2008: Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophys. Res. Lett., 35, L08712, https://doi.org/10.1029/2008GL033631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., L. Yang, and S.-P. Xie, 2011: Tropical Indian Ocean influence on northwest Pacific tropical cyclones in summer following strong El Niño. J. Climate, 24, 315322, https://doi.org/10.1175/2010JCLI3890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., T. D. B. Lambert, and M. A. Boothe, 2007: Accuracy of Atlantic and eastern North Pacific tropical cyclone intensity forecast guidance. Wea. Forecasting, 22, 747762, https://doi.org/10.1175/WAF1015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 11431155, https://doi.org/10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665669, https://doi.org/10.1038/44326.

  • Emanuel, K., 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 11391152, https://doi.org/10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2017: Will global warming make hurricane forecasting more difficult? Bull. Amer. Meteor. Soc., 98, 495501, https://doi.org/10.1175/BAMS-D-16-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and D. S. Nolan, 2004: Tropical cyclone activity and the global climate system. 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240–241.

  • England, M. H., and et al. , 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, https://doi.org/10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, B., M. S. Peng, T. Li, and D. E. Stevens, 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part II: Western North Pacific. Mon. Wea. Rev., 140, 10671080, https://doi.org/10.1175/2011MWR3618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fudeyasu, H., K. Ito, and Y. Miyamoto, 2018: Characteristics of tropical cyclone rapid intensification over the western North Pacific. J. Climate, 31, 89178930, https://doi.org/10.1175/JCLI-D-17-0653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and et al. , 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goni, G. J., and J. A. Trinanes, 2003: Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones. Eos, Trans. Amer. Geophys. Union, 84, 573, https://doi.org/10.1029/2003EO510001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goni, G. J., and et al. , 2009: Applications of satellite-derived ocean measurements to tropical cyclone intensity forecasting. Oceanography, 22, 190197, https://doi.org/10.5670/oceanog.2009.78.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gualdi, S., E. Scoccimarro, and A. Navarra, 2008: Changes in tropical cyclone activity due to global warming: Results from a high-resolution coupled general circulation model. J. Climate, 21, 52045228, https://doi.org/10.1175/2008JCLI1921.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y.-P., and Z.-M. Tan, 2018: Westward migration of tropical cyclone rapid-intensification over the northwestern Pacific during short duration El Niño. Nat. Commun., 9, 1507, https://doi.org/10.1038/s41467-018-03945-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, H. Z., J. Yang, L. G. Wu, D. Y. Gong, B. Wang, and M. N. Gao, 2017: Unusual growth in intense typhoon occurrences over the Philippine Sea in September after the mid-2000s. Climate Dyn., 48, 18931910, https://doi.org/10.1007/s00382-016-3181-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, K. A., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 32943315, https://doi.org/10.1175/2009MWR2679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., J. W. Hurrell, T. Xu, G. T. Bates, and A. S. Phillips, 2004: Twentieth century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming. Climate Dyn., 23, 391405, https://doi.org/10.1007/s00382-004-0433-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., P.-S. Chu, H. Murakami, and X. Zhao, 2014: An abrupt decrease in the late-season typhoon activity over the western North Pacific. J. Climate, 27, 42964312, https://doi.org/10.1175/JCLI-D-13-00417.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, A., and S. C. Bates, 2018: Internal climate variability and projected future regional steric and dynamic sea level rise. Nat. Commun., 9, 1068, https://doi.org/10.1038/s41467-018-03474-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, C., C. Zhang, S. Yang, D. Chen, and S. He, 2018: Perspective on the northwestward shift of autumn tropical cyclogenesis locations over the western North Pacific from shifting ENSO. Climate Dyn., 51, 24552465, https://doi.org/10.1007/s00382-017-4022-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., G. Huang, X.-T. Zheng, S.-P. Xie, X. Qu, Y. Du, and L. Liu, 2014: Interdecadal variations in ENSO influences on northwest Pacific–East Asian early summertime climate simulated in CMIP5 models. J. Climate, 27, 59825998, https://doi.org/10.1175/JCLI-D-13-00268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and A. V. Fedorov, 2019: Indian Ocean warming can strengthen the Atlantic meridional overturning circulation. Nat. Climate Change, 9, 747751, https://doi.org/10.1038/s41558-019-0566-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and et al. , 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huo, L., P. Guo, S. N. Hameed, and D. Jin, 2015: The role of tropical Atlantic SST anomalies in modulating western North Pacific tropical cyclone genesis. Geophys. Res. Lett., 42, 23782384, https://doi.org/10.1002/2015GL063184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ihara, C., Y. Kushnir, M. A. Cane, and V. H. de la Peña, 2009: Climate change over the equatorial Indo-Pacific in global warming. J. Climate, 22, 26782693, https://doi.org/10.1175/2008JCLI2581.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, N.-Y., and J. B. Elsner, 2019: Influence of global warming on the rapid intensification of western North Pacific tropical cyclones. Environ. Res. Lett., 14, 44027, https://doi.org/10.1088/1748-9326/ab0b50.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2012: El Niño–Southern Oscillation, the Madden–Julian Oscillation and Atlantic basin tropical cyclone rapid intensification. J. Geophys. Res., 117, D14104, https://doi.org/10.1029/2012JD017714.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and et al. , 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, https://doi.org/10.1038/ngeo779.

  • Leipper, D. F., 1967: Observed ocean conditions and Hurricane Hilda, 1964. J. Atmos. Sci., 24, 182186, https://doi.org/10.1175/1520-0469(1967)024<0182:OOCAHH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leipper, D. F., and D. Volgenau, 1972: Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr., 2, 218224, https://doi.org/10.1175/1520-0485(1972)002<0218:HHPOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. I. Antonov, T. P. Boyer, and C. Stephens, 2000: Warming of the world ocean. Science, 287, 22252229, https://doi.org/10.1126/science.287.5461.2225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, J., L. Wu, and G. Gu, 2018: Rapid weakening of tropical cyclones in monsoon gyres over the tropical western North Pacific. J. Climate, 31, 10151028, https://doi.org/10.1175/JCLI-D-16-0784.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-C. Wu, K. A. Emanuel, I.-H. Lee, C.-R. Wu, and I.-F. Pun, 2005: The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, 26352649, https://doi.org/10.1175/MWR3005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-C. Wu, I.-F. Pun, and D.-S. Ko, 2008: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification. Mon. Wea. Rev., 136, 32883306, https://doi.org/10.1175/2008MWR2277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., I. Pun, and C. Lien, 2014: “Category-6” supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming. Geophys. Res. Lett., 41, 85478553, https://doi.org/10.1002/2014GL061281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, K. S., and J. C. L. Chan, 2013: Inactive period of western North Pacific tropical cyclone activity in 1998–2011. J. Climate, 26, 26142630, https://doi.org/10.1175/JCLI-D-12-00053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, R., C. Chen, and G. Wang, 2016: Change of tropical cyclone heat potential in response to global warming. Adv. Atmos. Sci., 33, 504510, https://doi.org/10.1007/s00376-015-5112-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J. J., W. Sasaki, and Y. Masumoto, 2012: Indian Ocean warming modulates Pacific climate change. Proc. Natl. Acad. Sci. USA, 109, 18 70118 706, https://doi.org/10.1073/pnas.1210239109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Z., J. Fei, L. Liu X. Huang, and Y. Li, 2017: An investigation of the influences of mesoscale ocean eddies on tropical cyclone intensities. Mon. Wea. Rev., 145, 11811201, https://doi.org/10.1175/MWR-D-16-0253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Z., J. Fei, and X. Huang, 2019: A definition of rapid weakening for tropical cyclones over the western North Pacific. Geophys. Res. Lett., 46, 11 47111 478, https://doi.org/10.1029/2019GL085090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mainelli, M., M. DeMaria, L. K. Shay, and G. Goni, 2008: Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Wea. Forecasting, 23, 316, https://doi.org/10.1175/2007WAF2006111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maue, R. N., 2011: Recent historically low global tropical cyclone activity. Geophys. Res. Lett., 38, L14803, https://doi.org/10.1029/2011GL047711.

  • Mendelsohn, R., K. Emanuel, S. Chonabayashi, and L. Bakkensen, 2012: The impact of climate change on global tropical cyclone damage. Nat. Climate Change, 2, 205209, https://doi.org/10.1038/nclimate1357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peduzzi, P., B. Chatenoux, H. Dao, A. De Bono, C. Herold, J. Kossin, F. Mouton, and O. Nordbeck, 2012: Global trends in tropical cyclone risk. Nat. Climate Change, 2, 289294, https://doi.org/10.1038/nclimate1410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, M. S., B. Fu, T. Li, and D. E. Stevens, 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part I: North Atlantic. Mon. Wea. Rev., 140, 10471066, https://doi.org/10.1175/2011MWR3617.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., and et al. , 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395419, https://doi.org/10.1175/2008WAF2222128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M. K., K. Ritika, P. Terray, and S. Masson, 2014: The curious case of Indian Ocean warming. J. Climate, 27, 85018509, https://doi.org/10.1175/JCLI-D-14-00471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scharroo, R., W. H. F. Smith, and J. L. Lillibridge, 2005: The intensification of Hurricane Katrina observed by satellite altimetry. Eos, Trans. Amer. Geophys. Union, 86, 366, https://doi.org/10.1029/2005EO400004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., K. R. Knapp, and J. P. Kossin, 2014: The impact of best track discrepancies on global tropical cyclone climatologies using IBTrACS. Mon. Wea. Rev., 142, 38813899, https://doi.org/10.1175/MWR-D-14-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, https://doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, D., X. Ge, M. Peng, and T. Li, 2020: Characterization of tropical cyclone rapid intensification under two types of El Niño events in the western North Pacific. Int. J. Climatol., 40, 23592372, https://doi.org/10.1002/JOC.6338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, S., J. Ming, and P. Chi, 2012: Large-scale characteristics and probability of rapidly intensifying tropical cyclones in the western North Pacific basin. Wea. Forecasting, 27, 411423, https://doi.org/10.1175/WAF-D-11-00042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, L., and S. C. Cheng, 2012: Impact of Indian Ocean basin warming and ENSO on tropical cyclone activities over the western Pacific. Chin. J. Atmos. Sci., 36, 12231235.

    • Search Google Scholar
    • Export Citation
  • Tao, W., G. Huang, K. Hu X. Qu, G. Wen, and H. Gong, 2015: Interdecadal modulation of ENSO teleconnections to the Indian Ocean basin mode and their relationship under global warming in CMIP5 models. Int. J. Climatol., 35, 391407, https://doi.org/10.1002/joc.3987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K., 2005: Uncertainty in hurricanes and global warming. Science, 308, 17531754, https://doi.org/10.1126/SCIENCE.1112551.

  • Vecchi, G. A., and B. J. Soden, 2007: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34, L08702, https://doi.org/10.1029/2006GL028905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wada, A., and J. C. L. Chan, 2008: Relationship between typhoon activity and upper ocean heat content. Geophys. Res. Lett., 35, L17603, https://doi.org/10.1029/2008GL035129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Zhou, 2008: Climate variation and prediction of rapid intensification in tropical cyclones in the western North Pacific. Meteor. Atmos. Phys., 99 (1-2), 116, https://doi.org/10.1007/s00703-006-0238-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., W. Wang, D. Wang, and Q. Wang, 2006: Interannual variability of the South China Sea associated with El Niño. J. Geophys. Res., 111, C03023, https://doi.org/10.1029/2005jc003333.

    • Search Google Scholar
    • Export Citation
  • Wang, C., X. Wang, R. H. Weisberg, and M. L. Black, 2017: Variability of tropical cyclone rapid intensification in the North Atlantic and its relationship with climate variations. Climate Dyn., 49, 36273645, https://doi.org/10.1007/s00382-017-3537-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., J. Y. Yu, and H. Paek, 2017: Enhanced biennial variability in the Pacific due to Atlantic capacitor effect. Nat. Commun., 8, 14887, https://doi.org/10.1038/NCOMMS14887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and H. Liu, 2016: PDO modulation of ENSO effect on tropical cyclone rapid intensification in the western North Pacific. Climate Dyn., 46, 1528, https://doi.org/10.1007/s00382-015-2563-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., C. Wang, L. Zhang, and X. Wang, 2015: Multidecadal variability of tropical cyclone rapid intensification in the western North Pacific. J. Climate, 28, 38063820, https://doi.org/10.1175/JCLI-D-14-00400.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and et al. , 2012: Relationship of environmental relative humidity with North Atlantic tropical cyclone intensity and intensification rate. Geophys. Res. Lett., 39, L20809, https://doi.org/10.1029/2012GL053546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S.-H., N.-Y. Kang, J. B. Elsner, and Y. Chun, 2018: Influence of global warming on western North Pacific tropical cyclone intensities during 2015. J. Climate, 31, 919925, https://doi.org/10.1175/JCLI-D-17-0143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and X. Lei, 2011a: Contributions of ENSO and east Indian Ocean SSTA to the interannual variability of northwest Pacific tropical cyclone frequency. J. Climate, 24, 509521, https://doi.org/10.1175/2010JCLI3808.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and C.-C. Wu, 2011b: Impact of SSTA in the east Indian Ocean on the frequency of northwest Pacific tropical cyclones: A regional atmospheric model study. J. Climate, 24, 62276242, https://doi.org/10.1175/JCLI-D-10-05014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and L. Tao, 2014: Intensified impact of east Indian Ocean SST anomaly on tropical cyclone genesis frequency over the western North Pacific. J. Climate, 27, 87248739, https://doi.org/10.1175/JCLI-D-14-00119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., B. Chen, and Y. Ding, 2018: Impacts of SST anomalies in the Indian-Pacific basin on northwest Pacific tropical cyclone activities during three super El Niño years. J. Oceanol. Limnol., 36, 2032, https://doi.org/10.1007/s00343-018-6321-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., L. Wu, and Q. Liu, 2009: Tropical cyclone damages in China 1983–2006. Bull. Amer. Meteor. Soc., 90, 489496, https://doi.org/10.1175/2008BAMS2631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., W. Zhang, Y. D. Chen, and T. Jiang, 2011: Flood, drought and typhoon disasters during the last half-century in the Guangdong province, China. Nat. Hazards, 57, 267278, https://doi.org/10.1007/s11069-010-9611-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., H. Wang, J. Sun, and H. Drange, 2010: Changes in the tropical cyclone genesis potential index over the western North Pacific in the SRES A2 scenario. Adv. Atmos. Sci., 27, 12461258, https://doi.org/10.1007/s00376-010-9096-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and C. Wang, 2016: Interdecadal modulation on the relationship between ENSO and typhoon activity during the late season in the western North Pacific. Climate Dyn., 47, 315328, https://doi.org/10.1007/s00382-015-2837-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and L. Wu, 2018: Modulation of convectively coupled equatorial Rossby wave on the western North Pacific tropical cyclones activity. Int. J. Climatol., 38, 932948, https://doi.org/10.1002/joc.5220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and C. Wang, 2019: On the relationship between ENSO and tropical cyclones in the western North Pacific during the boreal summer. Climate Dyn., 52, 275288, https://doi.org/10.1007/s00382-018-4136-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., P.-S. Chu, P.-C. Hsu, and H. Murakami, 2014: Exploratory analysis of extremely low tropical cyclone activity during the late-season of 2010 and 1998 over the western North Pacific and the South China Sea. J. Adv. Model. Earth Syst., 6, 11411153, https://doi.org/10.1002/2014MS000381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., X. Jiang, and L. Wu, 2015: Modulation of northwest Pacific tropical cyclone genesis by the intraseasonal variability. J. Meteor. Soc. Japan, 93, 8197, https://doi.org/10.2151/JMSJ.2015-006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., X. Jiang, and L. Wu, 2016: Boreal summer synoptic-scale waves over the western North Pacific in multimodel simulations. J. Climate, 29, 44874508, https://doi.org/10.1175/JCLI-D-15-0696.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., X. Duan, G. B. Raga, and P. J. Klotzbach, 2018a: Changes in characteristics of rapidly intensifying western North Pacific tropical cyclones related to climate regime shifts. J. Climate, 31, 81638179, https://doi.org/10.1175/JCLI-D-18-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., G. B. Raga, and P. J. Klotzbach, 2018b: Impact of the boreal summer quasi-biweekly oscillation on eastern North Pacific tropical cyclone activity. Int. J. Climatol., 38, 13531365, https://doi.org/10.1002/JOC.5250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., S. Chen, and P. J. Klotzbach, 2019: Recent strengthening of the relationship between the western North Pacific monsoon and western North Pacific tropical cyclone activity during the boreal summer. J. Climate, 32, 82838299, https://doi.org/10.1175/JCLI-D-19-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., S.-P. Xie, and Q. Liu, 2011: Response of the Indian Ocean basin mode and its capacitor effect to global warming. J. Climate, 24, 61466164, https://doi.org/10.1175/2011JCLI4169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., S.-P. Xie, Y. Du, L. Liu, G. Huang, and Q. Liu, 2013: Indian Ocean dipole response to global warming in the CMIP5 multimodel ensemble. J. Climate, 26, 60676080, https://doi.org/10.1175/JCLI-D-12-00638.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 248 248 16
Full Text Views 87 87 7
PDF Downloads 123 123 10

Possible Influence of Tropical Indian Ocean Sea Surface Temperature on the Proportion of Rapidly Intensifying Western North Pacific Tropical Cyclones during the Extended Boreal Summer

View More View Less
  • 1 Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 Key Laboratory of South China Sea Meteorological Disaster Prevention and Mitigation of Hainan Province, Haikoum, China
  • | 3 Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster/Pacific Typhoon Research Center/Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing, China
  • | 4 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 5 Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study examines the possible impact of tropical Indian Ocean (TIO) sea surface temperature anomalies (SSTAs) on the proportion of rapidly intensifying tropical cyclones (PRITC) over the western North Pacific (WNP) during the extended boreal summer (July–November). There is a robust interannual association (r = 0.46) between TIO SSTAs and WNP PRITC during 1979–2018. Composite analyses between years with warm and cold TIO SSTAs confirm a significant impact of TIO SSTA on WNP PRITC, with PRITC over the WNP basin being 50% during years with warm TIO SSTAs and 37% during years with cold TIO SSTAs. Tropical cyclone heat potential appears to be one of the most important factors in modulating the interannual change of PRITC over the WNP with a secondary role from midlevel moisture changes. Interannual changes in these large-scale factors respond to SSTA differences characterized by a tropics-wide warming, implying a possible global warming amplification on WNP PRITC. The possible footprint of global warming amplification of the TIO is deduced from 1) a significant correlation between TIO SSTAs and global mean SST (GMSST) and a significant linear increasing trend of GMSST and TIO SSTAs, and 2) an accompanying small difference of PRITC (~8%) between years with detrended warm and cold TIO SSTAs compared to the difference of PRITC (~13%) between years with nondetrended warm and cold TIO SSTAs. Global warming may contribute to increased TCHP, which is favorable for rapid intensification, but increased vertical wind shear is unfavorable for TC genesis, thus amplifying WNP PRITC.

ORCID: 0000-0002-4295-4991.

Corresponding author: Dr. Haikun Zhao, zhk2004y@gmail.com

Abstract

This study examines the possible impact of tropical Indian Ocean (TIO) sea surface temperature anomalies (SSTAs) on the proportion of rapidly intensifying tropical cyclones (PRITC) over the western North Pacific (WNP) during the extended boreal summer (July–November). There is a robust interannual association (r = 0.46) between TIO SSTAs and WNP PRITC during 1979–2018. Composite analyses between years with warm and cold TIO SSTAs confirm a significant impact of TIO SSTA on WNP PRITC, with PRITC over the WNP basin being 50% during years with warm TIO SSTAs and 37% during years with cold TIO SSTAs. Tropical cyclone heat potential appears to be one of the most important factors in modulating the interannual change of PRITC over the WNP with a secondary role from midlevel moisture changes. Interannual changes in these large-scale factors respond to SSTA differences characterized by a tropics-wide warming, implying a possible global warming amplification on WNP PRITC. The possible footprint of global warming amplification of the TIO is deduced from 1) a significant correlation between TIO SSTAs and global mean SST (GMSST) and a significant linear increasing trend of GMSST and TIO SSTAs, and 2) an accompanying small difference of PRITC (~8%) between years with detrended warm and cold TIO SSTAs compared to the difference of PRITC (~13%) between years with nondetrended warm and cold TIO SSTAs. Global warming may contribute to increased TCHP, which is favorable for rapid intensification, but increased vertical wind shear is unfavorable for TC genesis, thus amplifying WNP PRITC.

ORCID: 0000-0002-4295-4991.

Corresponding author: Dr. Haikun Zhao, zhk2004y@gmail.com
Save