• Adler, R. F., and et al. , 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004%3c1147:TVGPCP%3e2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and et al. , 2018: Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 564, 201206, https://doi.org/10.1038/s41586-018-0776-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cha, D.-H., and et al. , 2016: Future changes in summer precipitation in regional climate simulations over the Korean Peninsula forced by multi-RCP scenarios of HadGEM2-AO. Asia-Pac. J. Atmos. Sci., 52, 139149, https://doi.org/10.1007/s13143-016-0015-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., Z. Wen, R. Wu, Z. Chen, and P. Zhao, 2014: Interdecadal changes in the relationship between southern China winter–spring precipitation and ENSO. Climate Dyn., 43, 13271338, https://doi.org/10.1007/s00382-013-1947-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., and O. W. Frauenfeld, 2014: A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections. J. Geophys. Res. Atmos., 119, 57675786, https://doi.org/10.1002/2013JD021190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., J. Feng, and R. Wu, 2013: Role of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon. J. Climate, 26, 622635, https://doi.org/10.1175/JCLI-D-12-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, K.-S., D.-W. Kim, and H.-R. Byun, 2010: The regime shift in the early 1980s of spring precipitation in Korea. Int. J. Climatol., 30, 721732, https://doi.org/10.1002/joc.1927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, K.-S., S.-D. Kang, and H.-D. Kim, 2013: Possible relationship between North Korean total rainfall and Arctic Oscillation in May. Theor. Appl. Climatol., 112, 483494, https://doi.org/10.1007/s00704-012-0738-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, W., B. He, K. Takara, P. Luo, M. Hu, N. E. Alias, and D. Nover, 2015: Changes of precipitation amounts and extremes over Japan between 1901 and 2012 and their connection to climate indices. Climate Dyn., 45, 22732292, https://doi.org/10.1007/s00382-015-2778-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duc, H. N., H. Q. Bang, and N. X. Quang, 2018: Influence of the Pacific and Indian Ocean climate drivers on the rainfall in Vietnam. Int. J. Climatol., 38, 57175732, https://doi.org/10.1002/joc.5774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., and J. Li, 2011: Influence of El Niño Modoki on spring rainfall over south China. J. Geophys. Res., 116, D13102, https://doi.org/10.1029/2010JD015160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., W. Chen, C.-Y. Tam, and W. Zhou, 2011: Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. Int. J. Climatol., 31, 20912101, https://doi.org/10.1002/joc.2217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., and C.-H. Ho, 2002: Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophys. Res. Lett., 29, 1436, https://doi.org/10.1029/2001GL014523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., and C.-H. Ho, 2003: Arctic Oscillation signals in the East Asian summer monsoon. J. Geophys. Res., 108, 4066, https://doi.org/10.1029/2002JD002193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, S.-U., and H.-R. Byun, 2006: The existence and the climatological characteristics of the spring rainy period in Korea. Int. J. Climatol., 26, 637654, https://doi.org/10.1002/joc.1274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2016: ATM 552 Notes: Time Series Analysis. University of Washington, 275 pp.

  • He, S., Y. Gao, F. Li, H. Wang, and Y. He, 2017: Impact of Arctic Oscillation on the East Asian climate: A review. Earth-Sci. Rev., 164, 4862, https://doi.org/10.1016/j.earscirev.2016.10.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, C.-H., J.-H. Kim, K.-M. Lau, K.-M. Kim, D. Gong, and Y.-B. Lee, 2005: Interdecadal changes in heavy rainfall in China during the northern summer. Terr. Atmos. Oceanic Sci., 16, 11631176, https://doi.org/10.3319/TAO.2005.16.5.1163(A).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, D.-Q., J. Zhu, Y.-C. Zhang, J. Wang, and X.-Y. Kuang, 2015: The impact of the East Asian subtropical jet and polar front jet on the frequency of spring persistent rainfall over southern China in 1997–2011. J. Climate, 28, 60546066, https://doi.org/10.1175/JCLI-D-14-00641.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, X., and J. Ge, 2017: Interdecadal changes in the relationship between ENSO, EAWM, and the wintertime precipitation over China at the end of the twentieth century. J. Climate, 30, 19231937, https://doi.org/10.1175/JCLI-D-16-0422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juneng, L., and F. T. Tangang, 2005: Evolution of ENSO-related rainfall anomalies in Southeast Asia region and its relationship with atmosphere–ocean variations in Indo-Pacific sector. Climate Dyn., 25, 337350, https://doi.org/10.1007/s00382-005-0031-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-W., S.-I. An, S.-Y. Jun, H.-J. Park, and S.-W. Yeh, 2017: ENSO and East Asian winter monsoon relationship modulation associated with the anomalous northwest Pacific anticyclone. Climate Dyn., 49, 11571179, https://doi.org/10.1007/s00382-016-3371-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koide, N., A. W. Robertson, A. V. M. Ines, J.-H. Qian, D. G. DeWitt, and A. Lucero, 2013: Prediction of rice production in the Philippines using seasonal climate forecasts. J. Appl. Meteor. Climatol., 52, 552569, https://doi.org/10.1175/JAMC-D-11-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., and A. Kulkarni, 2001: Monsoon rainfall variations and teleconnections over South and East Asia. Int. J. Climatol., 21, 603616, https://doi.org/10.1002/joc.625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lansigan, F. P., W. L. de los Santos, and J. O. Coladilla, 2000: Agronomic impacts of climate variability on rice production in the Philippines. Agric. Ecosyst. Environ., 82, 129137, https://doi.org/10.1016/S0167-8809(00)00222-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., G. J. Yang, and S. H. Shen, 1988: Seasonal and intraseasonal climatology of summer monsoon rainfall over East Asia. Mon. Wea. Rev., 116, 1837, https://doi.org/10.1175/1520-0493(1988)116%3c0018:SAICOS%3e2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J. H., and P. Y. Julien, 2017: Influence of the El Niño/Southern Oscillation on South Korean streamflow variability. Hydrol. Processes, 31, 21622178, https://doi.org/10.1002/hyp.11168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., and B. Wang, 2014: Future change of global monsoon in the CMIP5. Climate Dyn., 42, 101119, https://doi.org/10.1007/s00382-012-1564-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, https://doi.org/10.1029/2010GL044007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1973: The standard error of time-averaged estimates of climatic means. J. Appl. Meteor., 12, 10661069, https://doi.org/10.1175/1520-0450(1973)012%3c1066:TSEOTA%3e2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., S. Yang, B. He, and C. Hu, 2016: Intensified springtime deep convection over the South China Sea and the Philippine Sea dries Southern China. Sci. Rep., 6, 30470, https://doi.org/10.1038/srep30470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X. H., and R. Q. Ding, 2007: The relationship between the spring Asian atmospheric circulation and the previous winter Northern Hemisphere annular mode. Theor. Appl. Climatol., 88, 7181, https://doi.org/10.1007/s00704-006-0231-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and et al. , 2017: Recent enhancement of central Pacific El Niño variability relative to last eight centuries. Nat. Commun., 8, 15386, https://doi.org/10.1038/ncomms15386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oki, T., and S. Kanae, 2006: Global hydrological cycles and world water resources. Science, 313, 10681072, https://doi.org/10.1126/science.1128845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, W., J. Mao, and G. Wu, 2013: Characteristics and mechanism of the 10–20-day oscillation of spring rainfall over southern China. J. Climate, 26, 50725087, https://doi.org/10.1175/JCLI-D-12-00618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., and G. W. Brier, 1958: Some Application of Statistics to Meteorology. Pennsylvania State University, 224 pp.

  • Qu, J., D. Gong, R. Mao, J. Yang, and S. Li, 2017: Possible influence of Arctic oscillation on precipitation along the East Asian rain belt during boreal spring. Theor. Appl. Climatol., 130, 487495, https://doi.org/10.1007/s00704-016-1900-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz-Barradas, A., and S. Nigam, 2018: Hydroclimate variability and change over the Mekong River basin: Modeling and predictability and policy implications. J. Hydrometeor., 19, 849869, https://doi.org/10.1175/JHM-D-17-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., S. Gualdi, A. Bellucci, M. Zampieri, and A. Navarra, 2013: Heavy precipitation events in a warmer climate: Results from CMIP5 models. J. Climate, 26, 79027911, https://doi.org/10.1175/JCLI-D-12-00850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, J., W. Choi, D. Youn, D.-S. R. Park, and J. Y. Kim, 2013: Relationship between the stratospheric quasi-biennial oscillation and the spring rainfall in the western North Pacific. Geophys. Res. Lett., 40, 59495953, https://doi.org/10.1002/2013GL058266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephan, C. C., N. P. Klingaman, P. L. Vidale, A. G. Turner, M.-E. Demory, and L. Guo, 2018: A comprehensive analysis of coherent rainfall patterns in China and potential drivers. Part I: Interannual variability. Climate Dyn., 50, 44054424, https://doi.org/10.1007/s00382-017-3882-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., and S. Yang, 2012: Persistent severe drought in southern China during winter–spring 2011: Large-scale circulation patterns and possible impacting factors. J. Geophys. Res., 117, D10112, https://doi.org/10.1029/2012JD017500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, F., and J.-Y. Yu, 2009: A 10–15-yr modulation cycle of ENSO intensity. J. Climate, 22, 17181735, https://doi.org/10.1175/2008JCLI2285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, L., Y. Hu, and J. Liu, 2016: Anthropogenic forcing on the Hadley circulation in CMIP5 simulations. Climate Dyn., 46, 33373350, https://doi.org/10.1007/s00382-015-2772-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and et al. , 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, https://doi.org/10.1175/1520-0477(1998)079%3c0061:APGTWA%3e2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2001: Indices of El Niño evolution. J. Climate, 14, 16971701, https://doi.org/10.1175/1520-0442(2001)014%3c1697:LIOENO%3e2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueda, H., A. Iwai, K. Kuwako, and M. E. Hori, 2006: Impact of anthropogenic forcing on the Asian summer monsoon as simulated by eight GCMs. Geophys. Res. Lett., 33, L06703, https://doi.org/10.1029/2005GL025336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vu, T. M., and A. K. Mishra, 2016: Spatial and temporal variability of standardized precipitation index over Indochina Peninsula. Cuad. Invest. Geogr., 42, 221232, https://doi.org/10.18172/cig.2928.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013%3c1517:PEATHD%3e2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, W., R. Zhang, M. Wen, B.-J. Kim, and J.-C. Nam, 2015: Interannual variation of the South Asian high and its relation with Indian and East Asian summer monsoon rainfall. J. Climate, 28, 26232634, https://doi.org/10.1175/JCLI-D-14-00454.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., Z.-Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 37423758, https://doi.org/10.1175/1520-0442(2003)016%3c3742:EOERAI%3e2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., and J. Mao, 2016: Interdecadal modulation of ENSO-related spring rainfall over South China by the Pacific decadal oscillation. Climate Dyn., 47, 32033220, https://doi.org/10.1007/s00382-016-3021-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., and J. Mao, 2018: Spatial and interannual variations of spring rainfall over eastern China in association with PDO–ENSO events. Theor. Appl. Climatol., 134, 935953, https://doi.org/10.1007/s00704-017-2323-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xin, X., R. Yu, T. Zhou, and B. Wang, 2006: Drought in late spring of South China in recent decades. J. Climate, 19, 31973206, https://doi.org/10.1175/JCLI3794.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., C. Lu, X. Shi, and Y. Ding, 2010: Large-scale topography of China: A factor for the seasonal progression of the Meiyu rainband? J. Geophys. Res., 115, D02110, https://doi.org/10.1029/2009JD012444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, F., and K.-M. Lau, 2004: Trend and variability of China precipitation in spring and summer: Linkage to sea-surface temperatures. Int. J. Climatol., 24, 16251644, https://doi.org/10.1002/joc.1094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., Z. Ma, and B. Xu, 2017: Modulation of monthly precipitation patterns over East China by the Pacific decadal oscillation. Climatic Change, 144, 405417, https://doi.org/10.1007/s10584-016-1662-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., X. Wang, C. Wang, and B. Dewitte, 2015: On the relationship between the North Pacific climate variability and the central Pacific El Niño. J. Climate, 28, 663677, https://doi.org/10.1175/JCLI-D-14-00137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ying, K., X. Zheng, T. Zhao, C. S. Frederiksen, and X.-W. Quan, 2017: Identifying the predictable and unpredictable patterns of spring-to-autumn precipitation over eastern China. Climate Dyn., 48, 31833206, https://doi.org/10.1007/s00382-016-3258-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, S.-H., C.-H. Ho, S. Yang, H.-J. Choi, and J.-G. Jhun, 2004: Influences of tropical western and extratropical Pacific SST on East and Southeast Asian climate in the summers of 1993–94. J. Climate, 17, 26732687, https://doi.org/10.1175/1520-0442(2004)017%3c2673:IOTWAE%3e2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, P., X. Zhang, H. Wan, and X. Pan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 10961108, https://doi.org/10.1175/JCLI-3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 284 284 18
Full Text Views 59 59 9
PDF Downloads 80 80 8

A Dipole Mode of Spring Precipitation between Southern China and Southeast Asia Associated with the Eastern and Central Pacific Types of ENSO

View More View Less
  • 1 School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
  • | 2 Department of Earth Science Education, Kyungpook National University, Daegu, South Korea
  • | 3 Department of Earth Science Education, Chonnam National University, Gwangju, South Korea
  • | 4 National Institute of Meteorological Sciences, Jeju, South Korea
  • | 5 Graduate School of Environmental Studies, Seoul National University, Seoul, South Korea
  • | 6 Department of Environmental Atmospheric Sciences, Pukyong National University, Busan, South Korea
© Get Permissions
Restricted access

Abstract

Because spring precipitation in East Asia is critical for recharging water resources after dry winters, its spatiotemporal variations and related mechanisms need in-depth research. This study analyzed a leading spatiotemporal variability of precipitation over East Asia for boreal spring (March–May) during 1979 to 2017. We found that a dipole mode dominates the anomalous spring precipitation between southern China and Southeast Asia with significant interannual and decadal variations. The interannual dipole mode is attributable to the eastern Pacific (EP)-type El Niño–Southern Oscillation (ENSO) while the decadal dipole mode is related to the decadal variation of the central Pacific (CP)-type ENSO. In the El Niño phases of both time scales, the anticyclonic anomaly over the South China Sea and Philippines causes moisture convergence (divergence) over southern China (Southeast Asia), resulting in positive (negative) precipitation anomalies therein; the opposite occurs in the La Niña phases. The ensemble experiments using the Community Atmosphere Model version 5.1 confirmed that the tropical sea surface temperature (SST) in the EP- and CP-type ENSO can be the major drivers of the interannual and decadal dipole modes, respectively. About half of 15 climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) showed that the El Niño phase of dipole mode will become dominant in the future. The individual models’ future projections however considerably vary, implying that there is still large uncertainty.

Corresponding author: Doo-Sun R. Park, dsrpark@knu.ac.kr

Abstract

Because spring precipitation in East Asia is critical for recharging water resources after dry winters, its spatiotemporal variations and related mechanisms need in-depth research. This study analyzed a leading spatiotemporal variability of precipitation over East Asia for boreal spring (March–May) during 1979 to 2017. We found that a dipole mode dominates the anomalous spring precipitation between southern China and Southeast Asia with significant interannual and decadal variations. The interannual dipole mode is attributable to the eastern Pacific (EP)-type El Niño–Southern Oscillation (ENSO) while the decadal dipole mode is related to the decadal variation of the central Pacific (CP)-type ENSO. In the El Niño phases of both time scales, the anticyclonic anomaly over the South China Sea and Philippines causes moisture convergence (divergence) over southern China (Southeast Asia), resulting in positive (negative) precipitation anomalies therein; the opposite occurs in the La Niña phases. The ensemble experiments using the Community Atmosphere Model version 5.1 confirmed that the tropical sea surface temperature (SST) in the EP- and CP-type ENSO can be the major drivers of the interannual and decadal dipole modes, respectively. About half of 15 climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) showed that the El Niño phase of dipole mode will become dominant in the future. The individual models’ future projections however considerably vary, implying that there is still large uncertainty.

Corresponding author: Doo-Sun R. Park, dsrpark@knu.ac.kr
Save