Tracking Moisture Sources of Precipitation over Central Asia: A Study Based on the Water-Source-Tagging Method

Jie Jiang State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of the Chinese Academy of Sciences, Beijing, China

Search for other papers by Jie Jiang in
Current site
Google Scholar
PubMed
Close
,
Tianjun Zhou State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of the Chinese Academy of Sciences, and CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China

Search for other papers by Tianjun Zhou in
Current site
Google Scholar
PubMed
Close
,
Hailong Wang Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Hailong Wang in
Current site
Google Scholar
PubMed
Close
,
Yun Qian Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Yun Qian in
Current site
Google Scholar
PubMed
Close
,
David Noone Department of Physics, University of Auckland, Auckland, New Zealand, and College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis,Oregon

Search for other papers by David Noone in
Current site
Google Scholar
PubMed
Close
, and
Wenmin Man State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Wenmin Man in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Central Asia is a semiarid to arid region that is sensitive to hydrological changes. We use the Community Atmosphere Model, version 5 (CAM5), equipped with a water-tagging capability, to investigate the major moisture sources for climatological precipitation and its long-term trends over central Asia. Europe, the North Atlantic Ocean, and local evaporation, which explain 33.2% ± 1.5%, 23.0% ± 2.5%, and 19.4% ± 2.2% of the precipitation, respectively, are identified as the most dominant moisture sources for northern central Asia (NCA). For precipitation over southern central Asia (SCA), Europe, the North Atlantic, and local evaporation contribute 25.4% ± 2.7%, 18.0% ± 1.7%, and 14.7% ± 1.9%, respectively. In addition, the contributions of South Asia (8.6% ± 1.7%) and the Indian Ocean (9.5% ± 2.0%) are also substantial for SCA. Modulated by the seasonal meridional shift in the subtropical westerly jet, moisture originating from the low and midlatitudes is important in winter, spring, and autumn, whereas northern Europe contributes more to summer precipitation. We also explain the observed drying trends over southeastern central Asia in spring and over NCA in summer during 1956–2005. The drying trend over southeastern central Asia in spring is mainly due to the decrease in local evaporation and weakened moisture fluxes from the Arabian Peninsula and Arabian Sea associated with the warming of the western Pacific Ocean. The drying trend over NCA in summer can be attributed to a decrease in local evaporation and reduced moisture from northern Europe that is due to the southward shift of the subtropical westerly jet.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0169.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Tianjun Zhou, zhoutj@lasg.iap.ac.cn

Abstract

Central Asia is a semiarid to arid region that is sensitive to hydrological changes. We use the Community Atmosphere Model, version 5 (CAM5), equipped with a water-tagging capability, to investigate the major moisture sources for climatological precipitation and its long-term trends over central Asia. Europe, the North Atlantic Ocean, and local evaporation, which explain 33.2% ± 1.5%, 23.0% ± 2.5%, and 19.4% ± 2.2% of the precipitation, respectively, are identified as the most dominant moisture sources for northern central Asia (NCA). For precipitation over southern central Asia (SCA), Europe, the North Atlantic, and local evaporation contribute 25.4% ± 2.7%, 18.0% ± 1.7%, and 14.7% ± 1.9%, respectively. In addition, the contributions of South Asia (8.6% ± 1.7%) and the Indian Ocean (9.5% ± 2.0%) are also substantial for SCA. Modulated by the seasonal meridional shift in the subtropical westerly jet, moisture originating from the low and midlatitudes is important in winter, spring, and autumn, whereas northern Europe contributes more to summer precipitation. We also explain the observed drying trends over southeastern central Asia in spring and over NCA in summer during 1956–2005. The drying trend over southeastern central Asia in spring is mainly due to the decrease in local evaporation and weakened moisture fluxes from the Arabian Peninsula and Arabian Sea associated with the warming of the western Pacific Ocean. The drying trend over NCA in summer can be attributed to a decrease in local evaporation and reduced moisture from northern Europe that is due to the southward shift of the subtropical westerly jet.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0169.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Tianjun Zhou, zhoutj@lasg.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.10 MB)
Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aizen, V. B., E. M. Aizen, D. R. Joswiak, K. Fujita, N. Takeuchi, and S. A. Nikitin, 2006: Climatic and atmospheric circulation pattern variability from ice-core isotope/geochemistry records (Altai, Tien Shan and Tibet). Ann. Glaciol., 43, 4960, https://doi.org/10.3189/172756406781812078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M. A., and M. K. Tippett, 2008: Variability and predictability of central Asia river flows: Antecedent winter precipitation and large-scale teleconnections. J. Hydrometeor., 9, 13341349, https://doi.org/10.1175/2008JHM976.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M. A., and A. Hoell, 2015: Drought in the Middle East and central–southwest Asia during winter 2013/14. Bull. Amer. Meteor. Soc., 96, S71S76, https://doi.org/10.1175/BAMS-D-15-00127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M. A., H. Cullen, and B. Lyon, 2002: Drought in central and southwest Asia: La Niña, the warm pool, and Indian Ocean precipitation. J. Climate, 15, 697700, https://doi.org/10.1175/1520-0442(2002)015<0697:DICASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and S. D. Schubert, 2002: Water vapor tracers as diagnostics of the regional hydrologic cycle. J. Hydrometeor., 3, 149165, https://doi.org/10.1175/1525-7541(2002)003<0149:WVTADO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., Y. C. Sud, S. D. Schubert, and G. K. Walker, 2003: Numerical simulation of the large-scale North American monsoon water sources. J. Geophys. Res., 108, 8614, https://doi.org/10.1029/2002JD003095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bothe, O., K. Fraedrich, and X. Zhu, 2012: Precipitation climate of central Asia and the large-scale atmospheric circulation. Theor. Appl. Climatol., 108, 345354, https://doi.org/10.1007/s00704-011-0537-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., D. Entekhabi, and P. S. Eagleson, 1993: Estimation of continental precipitation recycling. J. Climate, 6, 10771089, https://doi.org/10.1175/1520-0442(1993)006<1077:EOCPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1974: Climate and Lift. Academic Press, 508 pp.

  • Cai, Y., J. C. H. Chiang, S. F. M. Breitenbach, L. Tan, H. Cheng, R. L. Edwards, and Z. An, 2017: Holocene moisture changes in western China, central Asia, inferred from stalagmites. Quat. Sci. Rev., 158, 1528, https://doi.org/10.1016/j.quascirev.2016.12.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., and A. Dai, 2019: Precipitation characteristics in the community atmosphere model and their dependence on model physics and resolution. J. Adv. Model. Earth Syst., 11, 23522374, https://doi.org/10.1029/2018MS001536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2008: Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat. Sci. Rev., 27, 351364, https://doi.org/10.1016/j.quascirev.2007.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., S. Wang, Z. Hu, Q. Zhou, and Q. Hu, 2018: Spatiotemporal characteristics of seasonal precipitation and their relationships with ENSO in central Asia during 1901–2013. J. Geogr. Sci., 28, 13411368, https://doi.org/10.1007/s11442-018-1529-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, H., and Coauthors, 2012: The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophys. Res. Lett., 39, L01705, https://doi.org/10.1029/2011GL050202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Copernicus Climate Change Service, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), accessed 21 May 2019, https://cds.climate.copernicus.eu/cdsapp#!/home.

  • Dirmeyer, P. A., and K. L. Brubaker, 1999: Contrasting evaporative moisture sources during the drought of 1988 and the flood of 1993. J. Geophys. Res., 104, 19 38319 397, https://doi.org/10.1029/1999JD900222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dyer, E. L. E., D. B. A. Jones, J. Nusbaumer, H. Li, O. Collins, G. Vettoretti, and D. Noone, 2017: Congo Basin precipitation: Assessing seasonality, regional interactions, and sources ofmoisture. J. Geophys. Res. Atmos., 122, 68826898, https://doi.org/10.1002/2016JD026240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gessner, U., V. Naeimi, I. Klein, C. Kuenzer, D. Klein, and S. Dech, 2013: The relationship between precipitation anomalies and satellite-derived vegetation activity in central Asia. Global Planet. Change, 110, 7487, https://doi.org/10.1016/j.gloplacha.2012.09.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., and Coauthors, 2012: Oceanic and terrestrial sources of continental precipitation. Rev. Geophys., 50, RG4003, https://doi.org/10.1029/2012RG000389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, X., L. Yang, Y. Zhang, and J. Li, 2019: Spatial distribution, temporal variation, and transport characteristics of atmospheric water vapor over central Asia and the arid region of China. Global Planet. Change, 172, 159178, https://doi.org/10.1016/j.gloplacha.2018.06.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., and P. D. Jones, 2020: CRU TS4.03: Climatic Research Unit (CRU) Time-Series (TS) version 4.03 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2018). CEDA Archive, accessed 10 January 2020, https://doi.org/10.5285/10d3e3640f004c578403419aac167d82.

    • Crossref
    • Export Citation
  • Harrison, S. P., G. E. Yu, and P. E. Tarasov, 1996: Late quaternary lake-level record from northern Eurasia. Quat. Res., 45, 138159, https://doi.org/10.1006/qres.1996.0016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoell, A., C. Funk, and M. Barlow, 2015a: The forcing of southwestern Asia teleconnections by low-frequency sea surface temperature variability during boreal winter. J. Climate, 28, 15111526, https://doi.org/10.1175/JCLI-D-14-00344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoell, A., S. Shukla, M. Barlow, F. Cannon, C. Kelley, and C. Funk, 2015b: The forcing of monthly precipitation variability over southwest Asia during the boreal cold season. J. Climate, 28, 70387056, https://doi.org/10.1175/JCLI-D-14-00757.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoell, A., M. Barlow, F. Cannon, and T. Xu, 2017: Oceanic origins of historical southwest Asia precipitation during the boreal cold season. J. Climate, 30, 28852903, https://doi.org/10.1175/JCLI-D-16-0519.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoell, A., M. Barlow, T. Xu, and T. Zhang, 2018: Cold season southwest Asia precipitation sensitivity to El Niño–Southern Oscillation events. J. Climate, 31, 44634482, https://doi.org/10.1175/JCLI-D-17-0456.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, H., and F. Dominguez, 2015: Evaluation of oceanic and terrestrial sources of moisture for the North American monsoon using numerical models and precipitation stable isotopes. J. Hydrometeor., 16, 1935, https://doi.org/10.1175/JHM-D-14-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., Q. Zhou, X. Chen, C. Qian, S. Wang, and J. Li, 2017: Variations and changes of annual precipitation in central Asia over the last century. Int. J. Climatol., 37, 157170, https://doi.org/10.1002/joc.4988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., Q. Zhou, X. Chen, J. Li, Q. Li, D. Chen, W. Liu, and G. Yin, 2018: Evaluation of three global gridded precipitation data sets in central Asia based on rain gauge observations. Int. J. Climatol., 38, 34753493, https://doi.org/10.1002/joc.5510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, L., L. Zhong, and Z. Ma, 2017: Decadal transition of moisture sources and transport in northwestern China during summer from 1982 to 2010. J. Geophys. Res. Atmos., 12 52212 540, https://doi.org/10.1002/2017JD027728.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, J., T. Zhou, and W. Zhang, 2019: Evaluation of satellite and reanalysis precipitable water vapor data sets against radiosonde observations in central Asia. Earth Space Sci., 6, 11291148, https://doi.org/10.1029/2019EA000654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, J., T. Zhou, X. Chen, and L. Zhang, 2020: Future changes in precipitation over central Asia based on CMIP6 projections. Environ. Res. Lett., 15, 054009, https://doi.org/10.1088/1748-9326/ab7d03.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knoche, H. R., and H. Kunstmann, 2013: Tracking atmospheric water pathways by direct evaporation tagging: A case study for West Africa. J. Geophys. Res. Atmos., 118, 12 34512 358, https://doi.org/10.1002/2013JD019976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., Y. Chen, W. Li, H. Deng, and G. Fang, 2015: Potential impacts of climate change on vegetation dynamics in central Asia. J. Geophys. Res. Atmos., 120, 12 34512 356, https://doi.org/10.1002/2015JD023618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, L., A. Gettelman, Y. Xu, C. Wu, Z. Wang, N. Rosenbloom, S. C. Bates, and W. Dong, 2019: CAM6 simulation of mean and extreme precipitation over Asia: Sensitivity to upgraded physical parameterizations and higher horizontal resolution. Geosci. Model Dev., 12, 37733793, https://doi.org/10.5194/gmd-12-3773-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lioubimtseva, E., and R. Cole, 2006: Uncertainties of climate change in arid environments of central Asia. Rev. Fish. Sci., 14, 2949, https://doi.org/10.1080/10641260500340603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, B., H. Li, J. Wu, T. Zhang, J. Liu, B. Liu, Y. Chen, and J. Baishan, 2019: Impact of El Niño and Southern Oscillation on the summer precipitation over northwest China. Atmos. Sci. Lett., 20, e928, https://doi.org/10.1002/ASl.928.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mariotti, A., 2007: How ENSO impacts precipitation in southwest central Asia. Geophys. Res. Lett., 34, L16706 https://doi.org/10.1029/2007GL030078.

  • Micklin, P., 2007: The Aral Sea disaster. Annu. Rev. Earth Planet. Sci., 35, 4772, https://doi.org/10.1146/annurev.earth.35.031306.140120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Micklin, P., 2016: The future Aral Sea: Hope and despair. Environ. Earth Sci., 75, 844, https://doi.org/10.1007/s12665-016-5614-5.

  • Mueller, B., and X. Zhang, 2016: Causes of drying trends in Northern Hemispheric land areas in reconstructed soil moisture data. Climatic Change, 134, 255267, https://doi.org/10.1007/s10584-015-1499-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp., www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.

  • Numaguti, A., 1999: Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. J. Geophys. Res., 104, 19571972, https://doi.org/10.1029/1998JD200026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nusbaumer, J., and D. Noone, 2018: Numerical evaluation of the modern and future origins of atmospheric river moisture over the West Coast of the United States. J. Geophys. Res. Atmos., 123, 64236442, https://doi.org/10.1029/2017JD028081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nusbaumer, J., T. E. Wong, C. Bardeen, and D. Noone, 2017: Evaluating hydrological processes in the Community Atmosphere Model Version 5 (CAM5) using stable isotope ratios of water. J. Adv. Model. Earth Syst., 9, 949977, https://doi.org/10.1002/2016MS000839.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp., https://doi.org/10.5065/D6FB50WZ.

    • Crossref
    • Export Citation
  • Pan, C., B. Zhu, J. Gao, and H. Kang, 2017: Source apportionment of atmospheric water over East Asia—A source tracer study in CAM5.1. Geosci. Model Dev., 10, 673688, https://doi.org/10.5194/gmd-10-673-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, C., B. Zhu, J. Gao, H. Kang, and T. Zhu, 2019: Quantitative identification of moisture sources over the Tibetan Plateau and the relationship between thermal forcing and moisture transport. Climate Dyn., 52, 181196, https://doi.org/10.1007/s00382-018-4130-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, D., T. Zhou, L. Zhang, and B. Wu, 2018: Human contribution to the increasing summer precipitation in central Asia from 1961 to 2013. J. Climate, 31, 80058021, https://doi.org/10.1175/JCLI-D-17-0843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rana, S., J. McGregor, and J. Renwick, 2019: Dominant modes of winter precipitation variability over central southwest Asia and inter-decadal change in the ENSO teleconnection. Climate Dyn., 53, 56895707, https://doi.org/10.1007/s00382-019-04889-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricketts, R. D., T. C. Johnson, E. T. Brown, K. A. Rasmussen, and V. V. Romanovsky, 2001: The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: Trace element and stable isotope composition of ostracodes. Palaeogeogr., Palaeoclimatol., Palaeoecol., 176, 207227, https://doi.org/10.1016/S0031-0182(01)00339-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, T., and Coauthors, 2007: Water sources in semiarid northeast Asia as revealed by field observations and isotope transport model. J. Geophys. Res., 112, D17112, https://doi.org/10.1029/2006JD008321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiemann, R., D. Lüthi, P. L. Vidale, and C. Schär, 2008: The precipitation climate of central Asia—Intercomparison of observational and numerical data sources in a remote semiarid region. Int. J. Climatol., 28, 295314, https://doi.org/10.1002/joc.1532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, and M. Ziese, 2018: GPCC Full Data Reanalysis version 2018 at 0.5°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. DWD, accessed 22 May 2019, https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2018_doi_download.html.

  • Sheffield, J., E. F. Wood, and M. L. Roderick, 2012: Little change in global drought over the past 60 years. Nature, 491, 435438, https://doi.org/10.1038/nature11575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., 1993: Evaporation. Handbook of Hydrology, McGraw Hill, 4.1–4.53.

  • Singh, H. K. A., C. M. Bitz, A. Donohoe, J. Nusbaumer, and D. C. Noone, 2016: A mathematical framework for analysis of water tracers. Part II: Understanding large-scale perturbations in the hydrological cycle due to CO2 doubling. J. Climate, 29, 67656782, https://doi.org/10.1175/JCLI-D-16-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sodemann, H., and E. Zubler, 2010: Seasonal and inter-annual variability of the moisture sources for alpine precipitation during 1995-2002. Int. J. Climatol., 30, 947961, https://doi.org/10.1002/JOC.1932.

    • Search Google Scholar
    • Export Citation
  • Sodemann, H., C. Schwierz, and H. Wernli, 2008: Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J. Geophys. Res., 113, D03107, https://doi.org/10.1029/2007JD008503.

    • Search Google Scholar
    • Export Citation
  • Sodemann, H., H. Wernli, and C. Schwierz, 2009: Sources of water vapour contributing to the Elbe flood in August 2002—A tagging study in a mesoscale model. Quart. J. Roy. Meteor. Soc., 135, 205223, https://doi.org/10.1002/qj.374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stohl, A., and P. James, 2004: A Lagrangian analysis of the atmospheric branch of the global water cycle: Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe. J. Hydrometeor., 5, 656678, https://doi.org/10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Q., C. Miao, Q. Duan, H. Ashouri, S. Sorooshian, and K. L. Hsu, 2018: A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys., 56, 79107, https://doi.org/10.1002/2017RG000574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Syed, F. S., F. Giorgi, J. S. Pal, and M. P. King, 2006: Effect of remote forcings on the winter precipitation of central southwest Asia Part I: Observations. Theor. Appl. Climatol., 86, 147160, https://doi.org/10.1007/s00704-005-0217-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Syed, F. S., F. Giorgi, J. S. Pal, and K. Keay, 2010: Regional climate model simulation of winter climate over central-southwest Asia, with emphasis on NAO and ENSO effects. Int. J. Climatol., 30, 220235, https://doi.org/10.1002/JOC.1887.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, G. Van Der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and J. Sheffield, 2014: Global warming and changes in drought. Nat. Climate Change, 4, 1722, https://doi.org/10.1038/nclimate2067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varis, O., 2014: Resources: Curb vast water use in central Asia. Nature, 514, 2729, https://doi.org/10.1038/514027a.

  • Varuolo-Clarke, A. M., K. A. Reed, and B. Medeiros, 2019: Characterizing the North American monsoon in the Community Atmosphere Model: Sensitivity to resolution and topography. J. Climate, 32, 83558372, https://doi.org/10.1175/JCLI-D-18-0567.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., J. G. Fyke, J. T. M. Lenaerts, J. M. Nusbaumer, H. Singh, D. Noone, P. J. Rasch, and R. Zhang, 2020: Influence of sea-ice anomalies on Antarctic precipitation using source attribution in the Community Earth System Model. Cryosphere, 14, 429444, https://doi.org/10.5194/tc-14-429-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., and Coauthors, 2014: The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J. Adv. Model. Earth Syst., 6, 980997, https://doi.org/10.1002/2013MS000276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, W., R. Zhang, M. Wen, and S. Yang, 2017: Relationship between the Asian westerly jet stream and summer rainfall over central Asia and North China: Roles of the Indian monsoon and the South Asian high. J. Climate, 30, 537552, https://doi.org/10.1175/JCLI-D-15-0814.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, D., H. Xu, J. Lan, K. Zhou, Y. Ye, J. Zhang, Z. An, and K. M. Yeager, 2019: Solar activity and the westerlies dominate decadal hydroclimatic changes over arid central Asia. Global Planet. Change, 173, 5360, https://doi.org/10.1016/j.gloplacha.2018.12.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, J., Q. Yang, W. Mao, X. Xu, and Z. Liu, 2016: Evaluation of the impacts of climate change and human activities on the hydrological environment in central Asia (in Chinese). J. Glaciol. Geocryology, 38, 222230, https://doi.org/0.7522/j.issn.1000-0240.2016.0025.

    • Search Google Scholar
    • Export Citation
  • Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, https://doi.org/10.1175/BAMS-D-11-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, X., A. Gruber, and P. Arkin, 2004: Comparison of the GPCP and CMAP merged gauge–satellite monthly precipitation products for the period 1979–2001. J. Hydrometeor., 5, 12071222, https://doi.org/10.1175/JHM-392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, Z. Y., H. Wang, and X. Liu, 2014: A comparative study on precipitation climatology and interannual variability in the lower midlatitude East Asia and central Asia. J. Climate, 27, 78307848, https://doi.org/10.1175/JCLI-D-14-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., and H. Zhang, 2016: Impacts of SST Warming in tropical Indian Ocean on CMIP5 model-projected summer rainfall changes over central Asia. Climate Dyn., 46, 32233238, https://doi.org/10.1007/s00382-015-2765-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., A. Huang, Y. Zhou, D. Huang, Q. Yang, Y. Ma, M. Li, and G. Wei, 2014a: Impact of the middle and upper tropospheric cooling over central Asia on the summer rainfall in the Tarim Basin, China. J. Climate, 27, 47214732, https://doi.org/10.1175/JCLI-D-13-00456.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., M. Z. Wang, A. N. Huang, H. J. Li, W. Huo, and Q. Yang, 2014b: Relationships between the west Asian subtropical westerly jet and summer precipitation in northern Xinjiang. Theor. Appl. Climatol., 116, 403411, https://doi.org/10.1007/s00704-013-0948-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., X. Yu, J. Yao, and X. Dong, 2018: Evaluation of the subtropical westerly jet and its effects on the projected summer rainfall over central Asia using multi-CMIP5 models. Int. J. Climatol., 38, e1176e1189, https://doi.org/10.1002/joc.5443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., and J. Zhang, 2009: Harmonious inter-decadal changes of July–August upper tropospheric temperature across the North Atlantic, Eurasian continent, and North Pacific. Adv. Atmos. Sci., 26, 656665, https://doi.org/10.1007/s00376-009-9020-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 557 0 0
Full Text Views 1159 439 32
PDF Downloads 1236 441 43