• Adam, O., T. Bischoff, and T. Schneider, 2016: Seasonal and interannual variations of the energy flux equator and ITCZ. Part I: Zonally averaged ITCZ position. J. Climate, 29, 32193230, https://doi.org/10.1175/JCLI-D-15-0512.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2009: On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans. J. Climate, 22, 41824196, https://doi.org/10.1175/2009JCLI2392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709, https://doi.org/10.1002/QJ.49711247308.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., and Coauthors, 2018: Global energetics and local physics as drivers of past, present and future monsoons. Nat. Geosci., 11, 392400, https://doi.org/10.1038/s41561-018-0137-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and T. Schneider, 2014: Energetic constraints on the position of the intertropical convergence zone. J. Climate, 27, 49374951, https://doi.org/10.1175/JCLI-D-13-00650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bordoni, S., and T. Schneider, 2008: Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat. Geosci., 1, 515519, https://doi.org/10.1038/ngeo248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., 1973: A dynamical model of the intertropical convergence zone. J. Atmos. Sci., 30, 190212, https://doi.org/10.1175/1520-0469(1973)030<0190:ADMOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J., S. Zebiak, and M. Cane, 2001: Relative roles of elevated heating and surface temperature gradients in driving anomalous surface winds over tropical oceans. J. Atmos. Sci., 58, 13711394, https://doi.org/10.1175/1520-0469(2001)058<1371:RROEHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, L., C. Jakob, P. May, V. V. Kumar, and S. Xie, 2013: Relationships between the large-scale atmosphere and the small-scale convective state for Darwin, Australia. J. Geophys. Res. Atmos., 118, 11 53411 545, https://doi.org/10.1002/JGRD.50645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dima, I. M., and J. M. Wallace, 2003: On the seasonality of the Hadley cell. J. Atmos. Sci., 60, 15221527, https://doi.org/10.1175/1520-0469(2003)060<1522:OTSOTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., and A. Voigt, 2017: Why future shifts in tropical precipitation will likely be small: The location of the tropical rain belt and the hemispheric contrast of energy input to the atmosphere. Climate Extremes: Patterns and Mechanisms, S. Y. S. Wang et al., Eds., John Wiley & Sons, 115–138.

    • Crossref
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, and D. McGee, 2013: The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the Last Glacial Maximum. J. Climate, 26, 35973618, https://doi.org/10.1175/JCLI-D-12-00467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., D. M. W. Frierson, and D. S. Battisti, 2014a: The effect of ocean mixed layer depth on climate in slab ocean aquaplanet experiments. Climate Dyn., 43, 10411055, https://doi.org/10.1007/s00382-013-1843-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, K. Armour, and D. McGee, 2014b: The interannual variability of tropical precipitation and interhemispheric energy transport. J. Climate, 27, 33773392, https://doi.org/10.1175/JCLI-D-13-00499.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., J. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143, https://doi.org/10.1002/qj.49712051902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and Y.-T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25, 720733, https://doi.org/10.1175/JCLI-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, B., and J. Marshall, 2017: Coupling of trade winds with ocean circulation damps ITCZ shifts. J. Climate, 30, 43954411, https://doi.org/10.1175/JCLI-D-16-0818.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205, https://doi.org/10.1029/2003GL018747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrop, B. E., J. Lu, and L. R. Leung, 2019: Sub-cloud moist entropy curvature as a predictor for changes in the seasonal cycle of tropical precipitation. Climate Dyn., 53, 34633479, https://doi.org/10.1007/S00382-019-04715-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and K. Larson, 2002: An important constraint on tropical cloud–climate feedback. Geophys. Res. Lett., 29, 1951, https://doi.org/10.1029/2002GL015835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2001: The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci., 58, 943948, https://doi.org/10.1175/1520-0469(2001)058<0943:TPOTPE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533, https://doi.org/10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, S. A., Y. Ming, and I. M. Held, 2015: Mechanisms of forced tropical meridional energy flux change. J. Climate, 28, 17251742, https://doi.org/10.1175/JCLI-D-14-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., and I. M. Held, 2012: Tropical precipitation, SSTs and the surface energy budget: A zonally symmetric perspective. Climate Dyn., 38, 19171924, https://doi.org/10.1007/S00382-011-1048-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, https://doi.org/10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., C. Wall, V. Yettella, B. Medeiros, C. Hannay, P. Caldwell, and C. M. Bitz, 2016: Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). J. Climate, 29, 46174636, https://doi.org/10.1175/JCLI-D-15-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., and J. Marotzke, 2000: Meridional heat transport by the subtropical cell. J. Phys. Oceanogr., 30, 696705, https://doi.org/10.1175/1520-0485(2000)030<0696:MHTBTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31, 12321240, https://doi.org/10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, X. J., and T. Schneider, 2011: Response of the Hadley circulation to climate change in an aquaplanet GCM coupled to a simple representation of ocean heat transport. J. Atmos. Sci., 68, 769783, https://doi.org/10.1175/2010JAS3553.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R., and S. Nigam, 1987: On the role of sea-surface temperature-gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Donohoe, D. Ferreira, and D. McGee, 2014: The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone. Climate Dyn., 42, 19671979, https://doi.org/10.1007/s00382-013-1767-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGee, D., A. Donohoe, J. Marshall, and D. Ferreira, 2014: Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene. Earth Planet. Sci. Lett., 390, 6979, https://doi.org/10.1016/j.epsl.2013.12.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., T. Schneider, S. Bordoni, and I. Eisenman, 2013a: Hadley circulation response to orbital precession. Part I: Aquaplanets. J. Climate, 26, 740753, http://doi.org/10.1175/JCLI-D-11-00716.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., T. Schneider, S. Bordoni, and I. Eisenman, 2013b: Hadley circulation response to orbital precession. Part II: Subtropical continent. J. Climate, 26, 754771, https://doi.org/10.1175/JCLI-D-12-00149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, J., W. R. Boos, and Z. Kuang, 2010: Observational evaluation of a convective quasi-equilibrium view of monsoons. J. Climate, 23, 44164428, https://doi.org/10.1175/2010JCLI3505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, O., and J. D. Neelin, 2006: Critical phenomena in atmospheric precipitation. Nat. Phys., 2, 393396, https://doi.org/10.1038/nphys314.

  • Plumb, R. A., 2007: Dynamical constraints on monsoon circulations. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 252–266.

  • Popp, M., and S. Bony, 2019: The influence of spatial organization of convection on the large-scale circulation. 20th EGU General Assembly, Vienna, Austria, European Geoscience Union, Abstract EGU2-18-13597, https://meetingorganizer.copernicus.org/EGU2018/EGU2018-13597.pdf.

  • Raymond, D., S. Sessions, A. H. Sobel, and Z. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst., 1 (9), https://doi.org/10.3894/JAMES.2009.1.9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, W. H. G., P. J. Valdes, and J. S. Singarayer, 2017: Can energy fluxes be used to interpret glacial/interglacial precipitation changes in the tropics? Geophys. Res. Lett., 44, 63736382, https://doi.org/10.1002/2017GL073103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, E., and R. Lindzen, 1977: Axially symmetric steady-state models of the basic state for instability and climate studies. Part I. Linearized calculations. J. Atmos. Sci., 34, 263279, https://doi.org/10.1175/1520-0469(1977)034<0263:ASSSMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34, 655688, https://doi.org/10.1146/annurev.earth.34.031405.125144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the Intertropical Convergence Zone. Nature, 513, 4553, https://doi.org/10.1038/nature13636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, J., S. M. Kang, and T. M. Merlis, 2017: A model intercomparison of the tropical precipitation response to a CO2 doubling in aquaplanet simulations. Geophys. Res. Lett., 44, 9931000, https://doi.org/10.1002/2016GL072347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and O. Pauluis, 2012: Tropical and subtropical meridional latent heat transports by disturbances to the zonal mean and their role in the general circulation. J. Atmos. Sci., 69, 18721889, https://doi.org/10.1175/JAS-D-11-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., A. Voigt, S. M. Kang, and J. Seo, 2015: Response of the Intertropical Convergence Zone to zonally asymmetric subtropical surface forcings. Geophys. Res. Lett., 42, 99619969, https://doi.org/10.1002/2015GL066027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, M. S., Z. Kuang, and Y. Tian, 2017: Eddy influences on the strength of the Hadley circulation: Dynamic and thermodynamic perspectives. J. Atmos. Sci., 74, 467486, https://doi.org/10.1175/JAS-D-16-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., 2007: Simple models of ensemble-averaged precipitation and surface wind, given the sea surface temperature. The Global Circulation of the Atmosphere, Princeton University Press, 219–251.

  • Voigt, A., and T. A. Shaw, 2015: Circulation response to warming shaped by radiative changes of clouds and water vapour. Nat. Geosci., 8, 102106, https://doi.org/10.1038/ngeo2345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., S. Bony, J.-L. Dufresne, and B. Stevens, 2014: The radiative impact of clouds on the shift of the Intertropical Convergence Zone. Geophys. Res. Lett., 41, 43084315, https://doi.org/10.1002/2014GL060354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and Coauthors, 2016: The Tropical Rain Belts with an Annual Cycle and a Continent Model Intercomparison Project: TRACMIP. J. Adv. Model. Earth Syst., 8, 18681891, https://doi.org/10.1002/2016MS000748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, H. H., and S. Bordoni, 2018: Energetic constraints on the ITCZ position in idealized simulations with a seasonal cycle. J. Adv. Model. Earth Syst., 10, 17081725, https://doi.org/10.1029/2018MS001313.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 29 29 15
Full Text Views 8 8 6
PDF Downloads 9 9 6

Seasonal and CO2-Induced Shifts of the ITCZ: Testing Energetic Controls in Idealized Simulations with Comprehensive Models

View More View Less
  • 1 Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York
  • 2 Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, and Institute of Meteorology and Climate Research–Department Troposphere Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
© Get Permissions
Restricted access

Abstract

The Tropical Rain Belts with an Annual Cycle and Continent Model Intercomparison Project (TRACMIP) ensemble—a multimodel ensemble of slab-ocean simulations in idealized configurations—provides a test of the relationship between the zonal mean ITCZ and the cross-equatorial atmospheric energy transports (AHTeq). In a gross sense, the ITCZ position is linearly related to AHTeq, as expected from the energetic framework. Yet, in many aspects, the TRACMIP model simulations do not conform to the framework. Throughout the annual cycle there are large excursions in the ITCZ position unrelated to changes in the AHTeq and, conversely, substantial variations in the magnitude of the AHTeq while the ITCZ is stationary at its northernmost position. Variations both in the net vertical energy input at the ITCZ location and in the vertical profile of ascent play a role in setting the model behavior apart from the conceptual framework. Nevertheless, a linear fit to the ITCZ–AHTeq relationship captures a substantial fraction of the seasonal variations in these quantities as well as the intermodel or across-climate variations in their annual mean values. The slope of the ITCZ–AHTeq linear fit for annual mean changes across simulations with different forcings and configurations varies in magnitude and even sign from model to model and we identify variations in the vertical profile of ascent as a key factor. A simple sea surface temperature–based index avoids the complication of changes in the vertical structure of the atmospheric circulation and provides a more reliable diagnostic for the ITCZ position.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michela Biasutti, biasutti@ldeo.columbia.edu

Abstract

The Tropical Rain Belts with an Annual Cycle and Continent Model Intercomparison Project (TRACMIP) ensemble—a multimodel ensemble of slab-ocean simulations in idealized configurations—provides a test of the relationship between the zonal mean ITCZ and the cross-equatorial atmospheric energy transports (AHTeq). In a gross sense, the ITCZ position is linearly related to AHTeq, as expected from the energetic framework. Yet, in many aspects, the TRACMIP model simulations do not conform to the framework. Throughout the annual cycle there are large excursions in the ITCZ position unrelated to changes in the AHTeq and, conversely, substantial variations in the magnitude of the AHTeq while the ITCZ is stationary at its northernmost position. Variations both in the net vertical energy input at the ITCZ location and in the vertical profile of ascent play a role in setting the model behavior apart from the conceptual framework. Nevertheless, a linear fit to the ITCZ–AHTeq relationship captures a substantial fraction of the seasonal variations in these quantities as well as the intermodel or across-climate variations in their annual mean values. The slope of the ITCZ–AHTeq linear fit for annual mean changes across simulations with different forcings and configurations varies in magnitude and even sign from model to model and we identify variations in the vertical profile of ascent as a key factor. A simple sea surface temperature–based index avoids the complication of changes in the vertical structure of the atmospheric circulation and provides a more reliable diagnostic for the ITCZ position.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michela Biasutti, biasutti@ldeo.columbia.edu
Save