• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aguilar, E., and Coauthors, 2005: Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J. Geophys. Res., 110, D23107, https://doi.org/10.1029/2005JD006119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aguilar, E., and Coauthors, 2009: Changes in temperature and precipitation extremes in western central Africa, Guinea Conakry, and Zimbabwe, 1955–2006. J. Geophys. Res., 114, D02115, https://doi.org/10.1029/2008JD011010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., 2016: Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond. Wea. Climate Extremes, 11, 416, https://doi.org/10.1016/j.wace.2015.10.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., P. Hope, D. Collins, B. Trewin, A. Lynch, and N. Nicholls, 2007: Trends in Australia’s climate means and extremes: A global context. Aust. Meteor. Mag., 56, 118.

    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., M. Bador, R. Roca, S. Contractor, M. Donat, and P. L. Nguyen, 2020: Intercomparison of annual precipitation indices and extremes over global land areas from in situ, space-based and reanalysis products. Environ. Res. Lett., 15, 055002, https://doi.org/10.1088/1748-9326/ab79e2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 228232, https://doi.org/10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Avila, F. B., S. Dong, K. P. Menang, J. Rajczak, M. Renom, M. G. Donat, and L. V. Alexander, 2015: Systematic investigation of gridding-related scaling effects on annual statistics of daily temperature and precipitation maxima: A case study for south-east Australia. Wea. Climate Extremes, 9, 616, https://doi.org/10.1016/j.wace.2015.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bador, M., L. V. Alexander, S. Contractor, and R. Roca, 2020: Diverse estimates of annual maxima daily precipitation in 22 state-of-the-art quasi-global land observation datasets. Environ. Res. Lett., 15, 035005, https://doi.org/10.1088/1748-9326/ab6a22.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, A., P. Finger, A. Meyer-Christoffer, B. Rudolf, K. Schamm, U. Schneider, and M. Ziese, 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data, 5, 7199, https://doi.org/10.5194/essd-5-71-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhutiyani, M. R., V. S. Kale, and N. J. Pawar, 2010: Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. Int. J. Climatol., 30, 535548, https://doi.org/10.1002/joc.1920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bulygina, O. N., V. N. Razuvaev, N. N. Korshunova, and P. Ya. Groisman, 2007: Climate variations and changes in extreme climate events in Russia. Environ. Res. Lett., 2, 045020, https://doi.org/10.1088/1748-9326/2/4/045020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caesar, J., and Coauthors, 2011: Changes in temperature and precipitation extremes over the Indo-Pacific region from 1971 to 2005. Int. J. Climatol., 31, 791801, https://doi.org/10.1002/joc.2118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casanueva, A., C. Rodríguez-Puebla, M. D. Frías, and N. González-Reviriego, 2014: Variability of extreme precipitation over Europe and its relationships with teleconnection patterns. Hydrol. Earth Syst. Sci., 18, 709725, https://doi.org/10.5194/hess-18-709-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castañeda, M., and M. González, 2008: Statistical analysis of the precipitation trends in the Patagonia region in southern South America. Atmósfera, 21, 303317.

    • Search Google Scholar
    • Export Citation
  • Chaney, N. W., J. Sheffield, G. Villarini, and E. F. Wood, 2014: Development of a high-resolution gridded daily meteorological dataset over sub-Saharan Africa: Spatial analysis of trends in climate extremes. J. Climate, 27, 58155835, https://doi.org/10.1175/JCLI-D-13-00423.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Contractor, S., L. V. Alexander, M. G. Donat, and N. Herold, 2015: How well do gridded datasets of observed daily precipitation compare over Australia? Adv. Meteor., 2015, 115, https://doi.org/10.1155/2015/325718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Contractor, S., M. G. Donat, and L. V. Alexander, 2018: Intensification of the daily wet day rainfall distribution across Australia. Geophys. Res. Lett., 45, 85688576, https://doi.org/10.1029/2018GL078875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Contractor, S., and Coauthors, 2020: Rainfall Estimates on a Gridded Network (REGEN)—A global land-based gridded dataset of daily precipitation from 1950 to 2016. Hydrol. Earth Syst. Sci., 24, 919943, https://doi.org/10.5194/hess-24-919-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., T. Zhao, and J. Chen, 2018: Climate change and drought: A precipitation and evaporation perspective. Curr. Climate Change Rep., 4, 301312, https://doi.org/10.1007/s40641-018-0101-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., R. M. Rasmussen, C. Liu, K. Ikeda, and A. F. Prein, 2020: A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations. Climate Dyn., 55, 343368, https://doi.org/10.1007/s00382-017-3787-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de los Milagros Skansi, M., and Coauthors, 2013: Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Global Planet. Change, 100, 295307, https://doi.org/10.1016/j.gloplacha.2012.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., G. Ren, Z. Zhao, Y. Xu, Y. Luo, Q. Li, and J. Zhang, 2007: Detection, causes and projection of climate change over China: An overview of recent progress. Adv. Atmos. Sci., 24, 954971, https://doi.org/10.1007/s00376-007-0954-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., L. V. Alexander, H. Yang, I. Durre, R. Vose, and J. Caesar, 2013a: Global land-based datasets for monitoring climatic extremes. Bull. Amer. Meteor. Soc., 94, 9971006, https://doi.org/10.1175/BAMS-D-12-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and Coauthors, 2013b: Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos., 118, 20982118, https://doi.org/10.1002/jgrd.50150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and Coauthors, 2014: Changes in extreme temperature and precipitation in the Arab region: Long-term trends and variability related to ENSO and NAO. Int. J. Climatol., 34, 581592, https://doi.org/10.1002/joc.3707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., A. L. Lowry, L. V. Alexander, P. A. O’Gorman, and N. Maher, 2016: More extreme precipitation in the world’s dry and wet regions. Nat. Climate Change, 6, 508513, https://doi.org/10.1038/nclimate2941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunn, R. J. H., M. G. Donat, and L. V. Alexander, 2014: Investigating uncertainties in global gridded datasets of climate extremes. Climate Past, 10, 21712199, https://doi.org/10.5194/cp-10-2171-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durre, I., M. J. Menne, B. E. Gleason, T. G. Houston, and R. S. Vose, 2010: Comprehensive automated quality assurance of daily surface observations. J. Appl. Meteor. Climatol., 49, 16151633, https://doi.org/10.1175/2010JAMC2375.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallant, A. J. E., K. J. Hennessy, and J. Risbey, 2007: Trends in rainfall indices for six Australian regions: 1910–2005. Aust. Meteor. Mag., 56, 223239.

    • Search Google Scholar
    • Export Citation
  • Gervais, M., L. B. Tremblay, J. R. Gyakum, and E. Atallah, 2014: Representing extremes in a daily gridded precipitation analysis over the United States: Impacts of station density, resolution, and gridding methods. J. Climate, 27, 52015218, https://doi.org/10.1175/JCLI-D-13-00319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, T. R. Karl, D. R. Easterling, B. Sun, and J. H. Lawrimore, 2004: Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations. J. Hydrometeor., 5, 6485, https://doi.org/10.1175/1525-7541(2004)005<0064:CCOTHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. N. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. Climate, 18, 13261350, https://doi.org/10.1175/JCLI3339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guerreiro, S. B., H. J. Fowler, R. Barbero, S. Westra, G. Lenderink, S. Blenkinsop, E. Lewis, and X.-F. Li, 2018: Detection of continental-scale intensification of hourly rainfall extremes. Nat. Climate Change, 8, 803807, https://doi.org/10.1038/s41558-018-0245-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guhathakurta, P., and M. Rajeevan, 2008: Trends in the rainfall pattern over India. Int. J. Climatol., 28, 14531469, https://doi.org/10.1002/joc.1640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and Coauthors, 2013: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 159–254, https://doi.org/10.1017/CBO9781107415324.008.

    • Crossref
    • Export Citation
  • Haylock, M. R., and Coauthors, 2006: Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J. Climate, 19, 14901512, https://doi.org/10.1175/JCLI3695.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrologic cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and V. E. Kousky, 2013: Changes in observed daily precipitation over the United States between 1950–79 and 1980–2009. J. Hydrometeor., 14, 105121, https://doi.org/10.1175/JHM-D-12-062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobeichi, S., G. Abramowitz, S. Contractor, and J. Evans, 2020: Evaluating precipitation datasets using surface water and energy budget closure. J. Hydrometeor., 21, 9891009, https://doi.org/10.1175/JHM-D-19-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofstra, N., M. Haylock, M. New, P. Jones, and C. Frei, 2008: Comparison of six methods for the interpolation of daily, European climate data. J. Geophys. Res., 113, D21110, https://doi.org/10.1029/2008JD010100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., Q. Zhou, X. Chen, C. Qian, S. Wang, and J. Li, 2017: Variations and changes of annual precipitation in Central Asia over the last century. Int. J. Climatol., 37, 157170, https://doi.org/10.1002/joc.4988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hulme, M., R. Doherty, T. Ngara, M. New, and D. Lister, 2001: African climate change: 1900–2100. Climate Res., 17, 145168, https://doi.org/10.3354/cr017145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jain, S. K., V. Kumar, and M. Saharia, 2013: Analysis of rainfall and temperature trends in northeast India. Int. J. Climatol., 33, 968978, https://doi.org/10.1002/joc.3483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and R. W. Knight, 1998: Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Amer. Meteor. Soc., 79, 231241, https://doi.org/10.1175/1520-0477(1998)079<0231:STOPAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. Griffin, 202 pp.

  • Kishore, P., S. Jyothi, G. Basha, S. V. Rao, M. Rajeevan, I. Velicogna, and T. C. Sutterley, 2016: Precipitation climatology over India: Validation with observations and reanalysis datasets and spatial trends. Climate Dyn., 46, 541556, https://doi.org/10.1007/s00382-015-2597-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein Tank, A. M. G., and G. P. Können, 2003: Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J. Climate, 16, 36653680, https://doi.org/10.1175/1520-0442(2003)016<3665:TIIODT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruger, A. C., 2006: Observed trends in daily precipitation indices in South Africa: 1910–2004. Int. J. Climatol., 26, 22752285, https://doi.org/10.1002/joc.1368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruger, A. C., and M. P. Nxumalo, 2017: Historical rainfall trends in South Africa: 1921–2015. Water SA, 43, 285297, https://doi.org/10.4314/wsa.v43i2.12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., K. Andsager, and D. D. R. Easterling, 1999: Long-term trends in extreme precipitation events over the conterminous United States and Canada. J. Climate, 12, 25152527, https://doi.org/10.1175/1520-0442(1999)012<2515:LTTIEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and Coauthors, 2014: Understanding recent eastern Horn of Africa rainfall variability and change. J. Climate, 27, 86308645, https://doi.org/10.1175/JCLI-D-13-00714.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limsakul, A., and P. Singhruck, 2016: Long-term trends and variability of total and extreme precipitation in Thailand. Atmos. Res., 169, 301317, https://doi.org/10.1016/j.atmosres.2015.10.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López-Moreno, J. I., S. M. Vicente-Serrano, M. Angulo-Martínez, S. Beguería, and A. Kenawy, 2010: Trends in daily precipitation on the northeastern Iberian Peninsula, 1955–2006. Int. J. Climatol., 30, 10261041, https://doi.org/10.1002/joc.1945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKellar, N., M. New, and C. Jack, 2014: Observed and modelled trends in rainfall and temperature for South Africa: 1960–2010. S. Afr. J. Sci., 110 (7/8), 113, https://doi.org/10.1590/sajs.2014/20130353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manton, M. J., and Coauthors, 2001: Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. Int. J. Climatol., 21, 269284, https://doi.org/10.1002/joc.610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayowa, O. O., S. H. Pour, and S. Shahid, M. Mohsenipour, S. B. Harun, A. Heryansyah, and T. Ismail, 2015: Trends in rainfall and rainfall-related extremes in the east coast of peninsular Malaysia. J. Earth Syst. Sci., 124, 16091622, https://doi.org/10.1007/s12040-015-0639-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mekis, E., and L. A. Vincent, 2011: An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmos.–Ocean, 49, 163177, https://doi.org/10.1080/07055900.2011.583910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the Global Historical Climatology Network–Daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712, https://doi.org/10.1002/joc.1181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moberg, A., and Coauthors, 2006: Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. J. Geophys. Res., 111, D22106, https://doi.org/10.1029/2006JD007103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mondal, A., D. Khare, and S. Kundu, 2015: Spatial and temporal analysis of rainfall and temperature trend of India. Theor. Appl. Climatol., 122, 143158, https://doi.org/10.1007/s00704-014-1283-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • New, M., and Coauthors, 2006: Evidence of trends in daily climate extremes over southern and west Africa. J. Geophys. Res., 111, D14102, https://doi.org/10.1029/2005JD006289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2015: Precipitation extremes under climate change. Curr. Climate Change Rep., 1, 4959, https://doi.org/10.1007/s40641-015-0009-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Omondi, P. A., and Coauthors, 2014: Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010. Int. J. Climatol., 34, 12621277, https://doi.org/10.1002/joc.3763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and R. Knutti, 2018: The uneven nature of daily precipitation and its change. Geophys. Res. Lett., 45, 11 98011 988, https://doi.org/10.1029/2018GL080298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., and R. S. Vose, 1997: An overview of the Global Historical Climatology Network temperature database. Bull. Amer. Meteor. Soc., 78, 28372850, https://doi.org/10.1175/1520-0477(1997)078<2837:AOOTGH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., and M. J. Manton, 2008: Monitoring changes in climate extremes: A tale of international collaboration. Bull. Amer. Meteor. Soc., 89, 12661271, https://doi.org/10.1175/2008BAMS2501.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., P. A. O’Gorman, E. M. Fischer, P. A. O’Gorman, and E. M. Fischer, 2017: Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Climate Change, 7, 423427, https://doi.org/10.1038/nclimate3287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahimzadeh, F., A. Asgari, and E. Fattahi, 2009: Variability of extreme temperature and precipitation in Iran during recent decades. Int. J. Climatol., 29, 329343, https://doi.org/10.1002/joc.1739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Re, M., and V. R. Barros, 2009: Extreme rainfalls in SE South America. Climatic Change, 96, 119136, https://doi.org/10.1007/s10584-009-9619-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roca, R., L. V. Alexander, G. Potter, M. Bador, R. Jucá, S. Contractor, M. G. Bosilovich, and S. Cloché, 2019: FROGS: A daily 1° × 1° gridded precipitation database of rain gauge, satellite and reanalysis products. Earth Syst. Sci. Data, 11, 10171035, https://doi.org/10.5194/essd-11-1017-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saurral, R. I., I. A. Camilloni, and V. R. Barros, 2017: Low-frequency variability and trends in centennial precipitation stations in southern South America. Int. J. Climatol., 37, 17741793, https://doi.org/10.1002/joc.4810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schamm, K., M. Ziese, A. Becker, P. Finger, A. Meyer-Christoffer, U. Schneider, M. Schröder, and P. Stender, 2014: Global gridded precipitation over land: A description of the new GPCC First Guess Daily product. Earth Syst. Sci. Data, 6, 4960, https://doi.org/10.5194/essd-6-49-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., and Coauthors, 2016: Percentile indices for assessing changes in heavy precipitation events. Climatic Change, 137, 201216, https://doi.org/10.1007/s10584-016-1669-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shephard, M. W., E. Mekis, R. J. Morris, Y. Feng, X. Zhang, K. Kilcup, and R. Fleetwood, 2014: Trends in Canadian short-duration extreme rainfall: Including an intensity-duration-frequency perspective. Atmos.–Ocean, 52, 398417, https://doi.org/10.1080/07055900.2014.969677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, G., W. Cai, T. Cowan, J. Ribbe, L. Rotstayn, and M. Dix, 2008: Variability and trend of North West Australia rainfall: Observations and coupled climate modeling. J. Climate, 21, 29382959, https://doi.org/10.1175/2007JCLI1908.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., P. A. Arkin, L. Ren, and S. S. P. Shen, 2012: Improved reconstruction of global precipitation since 1900. J. Atmos. Oceanic Technol., 29, 15051517, https://doi.org/10.1175/JTECH-D-12-00001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephenson, T. S., and Coauthors, 2014: Changes in extreme temperature and precipitation in the Caribbean region, 1961–2010. Int. J. Climatol., 34, 29572971, https://doi.org/10.1002/joc.3889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., and M. H. England, 2009: An analysis of late twentieth century trends in Australian rainfall. Int. J. Climatol., 29, 791807, https://doi.org/10.1002/joc.1736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terray, L., and J. Boé, 2013: Quantifying 21st-century France climate change and related uncertainties. C. R. Geosci., 345, 136149, https://doi.org/10.1016/j.crte.2013.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tierney, J. E., C. C. Ummenhofer, and P. B. DeMenocal, 2015: Past and future rainfall in the Horn of Africa. Sci. Adv., 1, e1500682, https://doi.org/10.1126/sciadv.1500682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climate Change, 42, 327339, https://doi.org/10.1023/A:1005488920935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Res., 47, 123138, https://doi.org/10.3354/cr00953.

  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051218, https://doi.org/10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Besselaar, E. J. M., A. M. G. Klein Tank, and T. A. Buishand, 2013: Trends in European precipitation extremes over 1951–2010. Int. J. Climatol., 33, 26822689, https://doi.org/10.1002/joc.3619.

    • Search Google Scholar
    • Export Citation
  • Vincent, L. A., and É. Mekis, 2006: Changes in daily and extreme temperature and precipitation indices for Canada over the twentieth century. Atmos.–Ocean, 44, 177193, https://doi.org/10.3137/ao.440205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, L. A., and Coauthors, 2011: Observed trends in indices of daily and extreme temperature and precipitation for the countries of the western Indian Ocean, 1961–2008. J. Geophys. Res., 116, D10108, https://doi.org/10.1029/2010JD015303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, F., S. Yang, W. Higgins, Q. Li, and Z. Zuo, 2014: Long-term changes in total and extreme precipitation over China and the United States and their links to oceanic-atmospheric features. Int. J. Climatol., 34, 286302, https://doi.org/10.1002/joc.3685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and L. Zhou, 2005: Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophys. Res. Lett., 32, L09707, https://doi.org/10.1029/2005GL022574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., B. Zhou, D. Qin, J. Wu, R. Gao, and L. Song, 2017: Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: Observation and projection. Adv. Atmos. Sci., 34, 289305, https://doi.org/10.1007/s00376-016-6160-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., L. V. Alexander, and F. W. Zwiers, 2013: Global increasing trends in annual maximum daily precipitation. J. Climate, 26, 39043918, https://doi.org/10.1175/JCLI-D-12-00502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yagouti, A., G. Boulet, L. Vincent, L. Vescovi, and É. Mekis, 2008: Observed changes in daily temperature and precipitation indices for southern Québec, 1960–2005. Atmos.–Ocean, 46, 243256, https://doi.org/10.3137/ao.460204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamamoto, J. K., 2000: An alternative measure of the reliability of ordinary kriging estimates. Math. Geol., 32, 489509, https://doi.org/10.1023/A:1007577916868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, H., M. G. Donat, L. V. Alexander, and Y. Sun, 2015: Multi-dataset comparison of gridded observed temperature and precipitation extremes over China. Int. J. Climatol., 35, 28092827, https://doi.org/10.1002/joc.4174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Q., and Coauthors, 2011: Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Climate Dyn., 36, 23992417, https://doi.org/10.1007/s00382-009-0735-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zandonadi, L., F. Acquaotta, S. Fratianni, and J. A. Zavattini, 2016: Changes in precipitation extremes in Brazil (Paraná River basin). Theor. Appl. Climatol., 123, 741756, https://doi.org/10.1007/s00704-015-1391-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, P., X. Zhang, H. Wan, and X. Pan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 10961108, https://doi.org/10.1175/JCLI-3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., P. Sun, V. P. Singh, and X. Chen, 2012: Spatial-temporal precipitation changes (1956–2000) and their implications for agriculture in China. Global Planet. Change, 82–83, 8695, https://doi.org/10.1016/j.gloplacha.2011.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. A. Vincent, W. D. Hogg, and A. Niitsoo, 2000: Temperature and precipitation trends in Canada during the 20th century. Atmos.–Ocean, 38, 395429, https://doi.org/10.1080/07055900.2000.9649654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., and Coauthors, 2005: Trends in Middle East climate extreme indices from 1950 to 2003. J. Geophys. Res., 110, D22104, https://doi.org/10.1029/2005JD006181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011a: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev.: Climate Change, 2, 851870, https://doi.org/10.1002/WCC.147.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., R. Brown, L. Vincent, W. Skinner, Y. Feng, and E. Mekis, 2011b: Canadian climate trends, 1950-2007. Canadian Biodiversity: Ecosystem Status and Trends 2010, Tech. Thematic Rep. 5, 27 pp., http://www.biodivcanada.ca/default.asp?lang=Enfn&gn=137E1147-0.

  • Ziese, M., A. Rauthe-Schöch, A. Becker, P. Finger, A. Meyer-Christoffer, and U. Schneider, 2018: GPCC Full Data Daily Version.2018 at 1.0°: Daily Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data. Global Precipitation Climatology Centre, https://www.dwd.de/EN/ourservices/gpcc/gpcc.html.

  • Zolina, O., C. Simmer, K. Belyaev, A. Kapala, and S. Gulev, 2009: Improving estimates of heavy and extreme precipitation using daily records from European rain gauges. J. Hydrometeor., 10, 701716, https://doi.org/10.1175/2008JHM1055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 769 769 52
Full Text Views 181 181 17
PDF Downloads 228 228 25

Changes in Observed Daily Precipitation over Global Land Areas since 1950

View More View Less
  • 1 School of Mathematics and Statistics, University of New South Wales Sydney, Sydney, New South Wales, Australia
  • 2 Barcelona Supercomputing Centre, Barcelona, Spain
  • 3 Climate Change Research Centre and ARC Centre of Excellence for Climate Extremes, University of New South Wales Sydney, Sydney, New South Wales, Australia
© Get Permissions
Restricted access

Abstract

Estimates of observed long-term changes in daily precipitation globally have been limited due to availability of high-quality observations. In this study, a new gridded dataset of daily precipitation, called Rainfall Estimates on a Gridded Network (REGEN) V1–2019, was used to perform an assessment of the climatic changes in precipitation at each global land location (except Antarctica). This study investigates changes in the number of wet days (≥1 mm) and the entire distribution of daily wet- and all-day records, in addition to trends in annual and seasonal totals from daily records, between 1950 and 2016. The main finding of this study is that precipitation has intensified across a majority of land areas globally throughout the wet-day distribution. This means that when it rains, light, moderate, or heavy wet-day precipitation has become more intense across most of the globe. Widespread increases in the frequency of wet days are observed across Asia and the United States, and widespread increases in the precipitation intensity are observed across Europe and Australia. Based on a comparison of spatial pattern of changes in frequency, intensity, and the distribution of daily totals, we propose that changes in light and moderate precipitation are characterized by changes in precipitation frequency, whereas changes in extreme precipitation are primarily characterized by intensity changes. Based on the uncertainty estimates from REGEN, this study highlights all results in the context of grids with high-quality observations.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Steefan Contractor, s.contractor@unsw.edu.au

Abstract

Estimates of observed long-term changes in daily precipitation globally have been limited due to availability of high-quality observations. In this study, a new gridded dataset of daily precipitation, called Rainfall Estimates on a Gridded Network (REGEN) V1–2019, was used to perform an assessment of the climatic changes in precipitation at each global land location (except Antarctica). This study investigates changes in the number of wet days (≥1 mm) and the entire distribution of daily wet- and all-day records, in addition to trends in annual and seasonal totals from daily records, between 1950 and 2016. The main finding of this study is that precipitation has intensified across a majority of land areas globally throughout the wet-day distribution. This means that when it rains, light, moderate, or heavy wet-day precipitation has become more intense across most of the globe. Widespread increases in the frequency of wet days are observed across Asia and the United States, and widespread increases in the precipitation intensity are observed across Europe and Australia. Based on a comparison of spatial pattern of changes in frequency, intensity, and the distribution of daily totals, we propose that changes in light and moderate precipitation are characterized by changes in precipitation frequency, whereas changes in extreme precipitation are primarily characterized by intensity changes. Based on the uncertainty estimates from REGEN, this study highlights all results in the context of grids with high-quality observations.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Steefan Contractor, s.contractor@unsw.edu.au
Save