Climate Field Completion via Markov Random Fields: Application to the HadCRUT4.6 Temperature Dataset

Adam Vaccaro Department of Earth Sciences, University of Southern California, Los Angeles, California

Search for other papers by Adam Vaccaro in
Current site
Google Scholar
PubMed
Close
,
Julien Emile-Geay Department of Earth Sciences, University of Southern California, Los Angeles, California

Search for other papers by Julien Emile-Geay in
Current site
Google Scholar
PubMed
Close
,
Dominque Guillot Department of Mathematical Sciences, University of Delaware, Newark, Delaware

Search for other papers by Dominque Guillot in
Current site
Google Scholar
PubMed
Close
,
Resherle Verna Department of Earth Sciences, University of Southern California, Los Angeles, California

Search for other papers by Resherle Verna in
Current site
Google Scholar
PubMed
Close
,
Colin Morice Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Colin Morice in
Current site
Google Scholar
PubMed
Close
,
John Kennedy Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by John Kennedy in
Current site
Google Scholar
PubMed
Close
, and
Bala Rajaratnam Department of Statistics, University of California, Davis, Davis, California

Search for other papers by Bala Rajaratnam in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Surface temperature is a vital metric of Earth’s climate state but is incompletely observed in both space and time: over half of monthly values are missing from the widely used HadCRUT4.6 global surface temperature dataset. Here we apply the graphical expectation–maximization algorithm (GraphEM), a recently developed imputation method, to construct a spatially complete estimate of HadCRUT4.6 temperatures. GraphEM leverages Gaussian Markov random fields (also known as Gaussian graphical models) to better estimate covariance relationships within a climate field, detecting anisotropic features such as land–ocean contrasts, orography, ocean currents, and wave-propagation pathways. This detection leads to improved estimates of missing values compared to methods (such as kriging) that assume isotropic covariance relationships, as we show with real and synthetic data. This interpolated analysis of HadCRUT4.6 data is available as a 100-member ensemble, propagating information about sampling variability available from the original HadCRUT4.6 dataset. A comparison of Niño-3.4 and global mean monthly temperature series with published datasets reveals similarities and differences due in part to the spatial interpolation method. Notably, the GraphEM-completed HadCRUT4.6 global temperature displays a stronger early twenty-first-century warming trend than its uninterpolated counterpart, consistent with recent analyses using other datasets. Known events like the 1877/78 El Niño are recovered with greater fidelity than with kriging, and result in different assessments of changes in ENSO variability through time. Gaussian Markov random fields provide a more geophysically motivated way to impute missing values in climate fields, and the associated graph provides a powerful tool to analyze the structure of teleconnection patterns. We close with a discussion of wider applications of Markov random fields in climate science.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Adam Vaccaro, avaccaro@usc.edu

Abstract

Surface temperature is a vital metric of Earth’s climate state but is incompletely observed in both space and time: over half of monthly values are missing from the widely used HadCRUT4.6 global surface temperature dataset. Here we apply the graphical expectation–maximization algorithm (GraphEM), a recently developed imputation method, to construct a spatially complete estimate of HadCRUT4.6 temperatures. GraphEM leverages Gaussian Markov random fields (also known as Gaussian graphical models) to better estimate covariance relationships within a climate field, detecting anisotropic features such as land–ocean contrasts, orography, ocean currents, and wave-propagation pathways. This detection leads to improved estimates of missing values compared to methods (such as kriging) that assume isotropic covariance relationships, as we show with real and synthetic data. This interpolated analysis of HadCRUT4.6 data is available as a 100-member ensemble, propagating information about sampling variability available from the original HadCRUT4.6 dataset. A comparison of Niño-3.4 and global mean monthly temperature series with published datasets reveals similarities and differences due in part to the spatial interpolation method. Notably, the GraphEM-completed HadCRUT4.6 global temperature displays a stronger early twenty-first-century warming trend than its uninterpolated counterpart, consistent with recent analyses using other datasets. Known events like the 1877/78 El Niño are recovered with greater fidelity than with kriging, and result in different assessments of changes in ENSO variability through time. Gaussian Markov random fields provide a more geophysically motivated way to impute missing values in climate fields, and the associated graph provides a powerful tool to analyze the structure of teleconnection patterns. We close with a discussion of wider applications of Markov random fields in climate science.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Adam Vaccaro, avaccaro@usc.edu
Save
  • Bollobás, B., 1998: Random graphs. Modern Graph Theory, Springer, 215–252.

    • Crossref
    • Export Citation
  • Bosilovich, M., R. Lucchesi, and M. Suarez, 2016: MERRA-2: File specification. GMAO Office Note 9, version 1.1, 73 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich785.pdf.

  • Brohan, P., J. J. Kennedy, I. Harris, S. F. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111, D12106, https://doi.org/10.1029/2005JD006548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunge, L., and A. J. Clarke, 2009: A verified estimation of the El Niño index Niño-3.4 since 1877. J. Climate, 22, 39793992, https://doi.org/10.1175/2009JCLI2724.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., 1984: Modeling sea level during El Niño. J. Phys. Oceanogr., 14, 18641874, https://doi.org/10.1175/1520-0485(1984)014<1864:MSLDEN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, D., and P. Huybers, 2019: Systematic differences in bucket sea surface temperature measurements among nations identified using a linear-mixed-effect method. J. Climate, 32, 25692589, https://doi.org/10.1175/JCLI-D-18-0562.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christy, J. R., W. B. Norris, R. W. Spencer, and J. J. Hnilo, 2007: Tropospheric temperature change since 1979 from tropical radiosonde and satellite measurements. J. Geophys. Res., 112, D06102, https://doi.org/10.1029/2005JD006881.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Cowtan, K., and R. G. Way, 2014: Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Quart. J. Roy. Meteor. Soc., 140, 19351944, https://doi.org/10.1002/qj.2297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craven, P., and G. Wahba, 1978: Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math., 31, 377403, https://doi.org/10.1007/BF01404567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cressie, N., 1990: The origins of kriging. Math. Geol., 22, 239252, https://doi.org/10.1007/BF00889887.

  • Davis, M., 2001: Late Victorian Holocausts: El Niño Famines and the Making of the Third World. Verso, 464 pp.

  • Dȩbski, W., 2009: Seismic tomography by Monte Carlo sampling. Pure Appl. Geophys., 167, 131152, https://doi.org/10.1007/S00024-009-0006-3.

    • Search Google Scholar
    • Export Citation
  • Dempster, A. P., 1972: Covariance selection. Biometrics, 28, 157175, https://doi.org/10.2307/2528966.

  • Dempster, A. P., N. M. Laird, and D. B. Rubin, 1977: Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Roy. Stat. Soc., 39B, 122, https://doi.org/10.1111/J.2517-6161.1977.TB01600.X.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in the Community Climate System Model version 4. J. Climate, 25, 26222651, https://doi.org/10.1175/JCLI-D-11-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and M. F. Wehner, 2009: Is the climate warming or cooling? Geophys. Res. Lett., 36, L08706, https://doi.org/10.1029/2009GL037810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emile-Geay, J., K. Cobb, M. Mann, and A. T. Wittenberg, 2013a: Estimating central equatorial Pacific SST variability over the past millennium. Part I: Methodology and validation. J. Climate, 26, 23022328, https://doi.org/10.1175/JCLI-D-11-00510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emile-Geay, J., K. Cobb, M. Mann, and A. T. Wittenberg, 2013b: Estimating central equatorial Pacific SST variability over the past millennium. Part II: Reconstructions and implications. J. Climate, 26, 23292352, https://doi.org/10.1175/JCLI-D-11-00511.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866, https://doi.org/10.1017/CBO9781107415324.020.

    • Crossref
    • Export Citation
  • Folland, C. K., and D. Parker, 1995: Correction of instrumental biases in historical sea surface temperature data. Quart. J. Roy. Meteor. Soc., 121, 319367, https://doi.org/10.1002/qj.49712152206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., A. W. Colman, D. M. Smith, O. Boucher, D. E. Parker, and J.-P. Vernier, 2013: High predictive skill of global surface temperature a year ahead. Geophys. Res. Lett., 40, 761767, https://doi.org/10.1002/grl.50169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedman, J., T. Hastie, and R. Tibshirani, 2008: Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9, 432441, https://doi.org/10.1093/biostatistics/kxm045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin, 2013: Bayesian Data Analysis. 2nd ed. Chapman and Hall, 675 pp.

    • Crossref
    • Export Citation
  • Giorgetta, M. A., and Coauthors, 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst., 5, 572597, https://doi.org/10.1002/jame.20038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golub, G. H., M. Heath, and G. Wahba, 1979: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 21, 215223, https://doi.org/10.1080/00401706.1979.10489751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guillot, D., B. Rajaratnam, and J. Emile-Geay, 2015: Statistical paleoclimate reconstructions via Markov random fields. Ann. Appl. Stat., 9, 324352, https://doi.org/10.1214/14-AOAS794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., J. Emile-Geay, E. J. Steig, D. Noone, D. M. Anderson, R. Tardif, N. Steiger, and W. A. Perkins, 2016: The Last Millennium Climate Reanalysis Project: Framework and first results. J. Geophys. Res. Atmos., 121, 67456764, https://doi.org/10.1002/2016JD024751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., and S. Lebedeff, 1987: Global trends of measured surface air temperature. J. Geophys. Res., 92, 13 34513 372, https://doi.org/10.1029/JD092iD11p13345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, R. Ruedy, K. Lo, D. W. Lea, and M. Medina-Elizade, 2006: Global temperature change. Proc. Natl. Acad. Sci. USA., 103, 14 28814 293, https://doi.org/10.1073/pnas.0606291103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345.

  • Hausfather, Z., M. J. Menne, C. N. Williams, T. Masters, R. Broberg, and D. Jones, 2013: Quantifying the effect of urbanization on U.S. Historical Climatology Network temperature records. J. Geophys. Res. Atmos., 118, 481494, https://doi.org/10.1029/2012JD018509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hausfather, Z., K. Cowtan, D. C. Clarke, P. Jacobs, M. Richardson, and R. Rohde, 2017: Assessing recent warming using instrumentally homogeneous sea surface temperature records. Sci. Adv., 3, e1601207, https://doi.org/10.1126/sciadv.1601207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerl, A. E., and R. W. Kennard, 1970a: Ridge regression: Applications to non-orthogonal problems. Technometrics, 12, 6982; Correction, 12, 723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerl, A. E., and R. W. Kennard, 1970b: Ridge regression: Biased estimation for non-orthogonal problems. Technometrics, 12, 5567, https://doi.org/10.1080/00401706.1970.10488634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J., and J. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., M. L’Heureux, J. Lawrimore, C. Liu, H.-M. Zhang, V. Banzon, Z.-Z. Hu, and A. Kumar, 2013: Why did large differences arise in the sea surface temperature datasets across the tropical Pacific during 2012? J. Atmos. Oceanic Technol., 30, 29442953, https://doi.org/10.1175/JTECH-D-13-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., and Coauthors, 2017: Recently amplified Arctic warming has contributed to a continual global warming trend. Nat. Climate Change, 7, 875879, https://doi.org/10.1038/s41558-017-0009-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ilyas, M., C. M. Brierley, and S. Guillas, 2017: Uncertainty in regional temperatures inferred from sparse global observations: Application to a probabilistic classification of El Niño. Geophys. Res. Lett., 44, 90689074, https://doi.org/10.1002/2017GL074596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe collection. Int. J. Climatol., 25, 865879, https://doi.org/10.1002/joc.1169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnstone, I., 2001: On the distribution of the largest eigenvalue in principal components analysis. Ann. Stat., 29, 295327, https://doi.org/10.1214/aos/1009210544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., and A. Moberg, 2003: Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. J. Climate, 16, 206223, https://doi.org/10.1175/1520-0442(2003)016<0206:HALSSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., D. H. Lister, T. J. Osborn, C. Harpham, M. Salmon, and C. P. Morice, 2012: Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res., 117, D05127, https://doi.org/10.1029/2011JD017139.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, A., Y. Kushnir, M. A. Cane, and M. B. Blumenthal, 1997: Reduced space optimal analysis for historical data sets: 136 years of Atlantic sea surface temperatures. J. Geophys. Res., 102, 27 83527 860, https://doi.org/10.1029/97JC01734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856-1991. J. Geophys. Res. Oceans, 103, 27 83527 860, https://doi.org/10.1029/97JC01736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, A., Y. Kushnir, and M. Cane, 2000: Reduced space optimal interpolation of historical marine sea level pressure: 1854–1992. J. Climate, 13, 29873002, https://doi.org/10.1175/1520-0442(2000)013<2987:RSOIOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. A. Cane, and Y. Kushnir, 2003: Reduced space approach to the optimal analysis interpolation of historical marine observations: Accomplishments, difficulties, and prospects. WMO/TD-1081, 199–216, http://www.wmo.ch/web/aom/marprog/Wordpdfs/Jcomm-TR/JCOMM\20TR13\20Marine\20Climatology/JCOMM_TR13.pdf.

  • Karl, T. R., S. Hassol, C. Miller, and W. Murray, 2006: Temperature trends in the lower atmosphere: Steps for understanding and reconciling differences. NOAA, 180 pp.

  • Karl, T. R., and Coauthors, 2015: Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348, 14691472, https://doi.org/10.1126/science.aaa5632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karspeck, A. R., A. Kaplan, and S. R. Sain, 2012: Bayesian modelling and ensemble reconstruction of mid-scale spatial variability in North Atlantic sea-surface temperatures for 1850–2008. Quart. J. Roy. Meteor. Soc., 138, 234248, https://doi.org/10.1002/qj.900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., 2014: A review of uncertainty in in situ measurements and data sets of sea surface temperature. Rev. Geophys., 52, 132, https://doi.org/10.1002/2013RG000434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011a: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties. J. Geophys. Res., 116, D14103, https://doi.org/10.1029/2010JD015218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011b: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J. Geophys. Res., 116, D14104, https://doi.org/10.1029/2010JD015220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kent, E. C., and Coauthors, 2017: A call for new approaches to quantifying biases in observations of sea surface temperature. Bull. Amer. Meteor. Soc., 98, 16011616, https://doi.org/10.1175/BAMS-D-15-00251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauritzen, S. L., 1996: Graphical Models. Clarendon Press, 312 pp.

  • Little, R. J. A., and D. B. Rubin, 2002: Statistical Analysis with Missing Data. Wiley Series in Probability and Statistics, John Wiley & Sons, 408 pp.

  • Liu, W., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part II: Parametric and structural uncertainty estimations. J. Climate, 28, 931951, https://doi.org/10.1175/JCLI-D-14-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mears, C. A., and F. J. Wentz, 2005: The effect of diurnal correction on satellite-derived lower tropospheric temperature. Science, 309, 15481551, https://doi.org/10.1126/science.1114772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, https://doi.org/10.1029/2011JD017187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neukom, R., N. Steiger, J. J. Gómez-Navarro, J. Wang, and J. P. Werner, 2019: No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature, 571, 550554, https://doi.org/10.1038/s41586-019-1401-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newey, W. K., and K. D. West, 1987: A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica, 55, 703708, https://doi.org/10.2307/1913610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nychka, D., S. Bandyopadhyay, D. Hammerling, F. Lindgren, and S. Sain, 2015: A multiresolution Gaussian process model for the analysis of large spatial datasets. J. Comput. Graph. Stat., 24, 579599, https://doi.org/10.1080/10618600.2014.914946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paluš, M., D. Hartman, J. Hlinka, and M. Vejmelka, 2011: Discerning connectivity from dynamics in climate networks. Nonlinear Processes Geophys., 18, 751763, https://doi.org/10.5194/npg-18-751-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12, 28252830.

  • Quinn, W. H., 1992: Large-scale ENSO events, the El Niño and other important regional features. Registro del Fenómeno El Niño y de Eventos ENSO en América del Sur (Record of the El Niño Phenomenon and ENSO Events in South America), J. Macharé and L. Ortlieb, Eds., Vol. 22, Institut Francais d’Etudes Andines, 13–22.

  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929948, https://doi.org/10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribes, A., S. Planton, and L. Terray, 2013: Application of regularised optimal fingerprinting to attribution. Part I: Method, properties and idealised analysis. Climate Dyn., 41, 28172836, https://doi.org/10.1007/s00382-013-1735-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rohde, R., and Coauthors, 2013: Berkeley Earth temperature averaging process. Geoinfor. Geostat.: Overview, 1 (2), 113, http://doi.org/10.4172/GIGS.1000103.

    • Search Google Scholar
    • Export Citation
  • Sarachik, E. S., and M. A. Cane, 2010: The El Niño–Southern Oscillation Phenomenon. Cambridge University Press, 384 pp.

    • Crossref
    • Export Citation
  • Sardeshmukh, P., and B. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2001: Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values. J. Climate, 14, 853871, https://doi.org/10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: Analysis of incomplete data: Readings from the statistics literature. Bull. Amer. Meteor. Soc., 87, 14101411, https://doi.org/10.1175/1520-0477-87.10.1405.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., J. M. Wallace, and G. W. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 13631392, https://doi.org/10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and Coauthors, 2004: Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature. J. Geophys. Res., 109, D24115, https://doi.org/10.1029/2004JD005306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., K. Willett, P. Jones, P. Thorne, and D. Dee, 2010: Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res., 115, D01110, https://doi.org/10.1029/2009JD012442.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, R. E. Livezey, and D. C. Stokes, 1996: Reconstruction of historical sea surface temperatures using empirical orthogonal functions. J. Climate, 9, 14031420, https://doi.org/10.1175/1520-0442(1996)009<1403:ROHSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., and J. R. Christy, 1990: Precise monitoring of global temperature trends from satellites. Science, 247, 15581562, https://doi.org/10.1126/science.247.4950.1558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coauthors, 2013: Technical summary. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 33–115.

  • Thorne, P. W., J. R. Lanzante, T. C. Peterson, D. J. Seidel, and K. P. Shine, 2010: Tropospheric temperature trends: History of an ongoing controversy. Wiley Interdiscip. Rev.: Climate Change, 2, 6688, https://doi.org/10.1002/WCC.80.

    • Search Google Scholar
    • Export Citation
  • Tikhonov, A. N., and V. Y. Arsenin, 1977: Solution of Ill-Posed Problems. Scripta Series in Mathematics, V. H. Winston and Sons, 258 pp.

  • Tingley, M. P., and P. Huybers, 2010: A Bayesian algorithm for reconstructing climate anomalies in space and time. Part I: Development and applications to paleoclimate reconstruction problems. J. Climate, 23, 27592781, https://doi.org/10.1175/2009JCLI3015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tingley, M. P., P. F. Craigmile, M. Haran, B. Li, E. Mannshardt, and B. Rajaratnam, 2012: Piecing together the past: Statistical insights into paleoclimatic reconstructions. Quat. Sci. Rev., 35, 122, https://doi.org/10.1016/j.quascirev.2012.01.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2001: Indices of El Niño evolution. J. Climate, 14, 16971701, https://doi.org/10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsonis, A. A., K. L. Swanson, and P. J. Roebber, 2006: What do networks have to do with climate? Bull. Amer. Meteor. Soc., 87, 585596, https://doi.org/10.1175/BAMS-87-5-585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tupikina, L., N. Molkenthin, C. López, E. Hernández-García, N. Marwan, and J. Kurths, 2016: Correlation networks from flows. The case of forced and time-dependent advection-diffusion dynamics. PLOS ONE, 11, e0153703, https://doi.org/10.1371/journal.pone.0153703.

    • Search Google Scholar
    • Export Citation
  • von Luxburg, U., 2007: A tutorial on spectral clustering. Stat. Comput., 17, 395416, https://doi.org/10.1007/s11222-007-9033-z.

  • Vose, R. S., and Coauthors, 2012: NOAA’s Merged Land–Ocean Surface Temperature analysis. Bull. Amer. Meteor. Soc., 93, 16771685, https://doi.org/10.1175/BAMS-D-11-00241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Emile-Geay, J. E. Smerdon, D. Guillot, and B. Rajaratnam, 2014: Evaluating climate field reconstruction techniques using improved emulations of real-world conditions. Climate Past, 10 (1), 119, https://doi.org/10.5194/cp-10-1-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Emile-Geay, D. Guillot, N. P. McKay, and B. Rajaratnam, 2015: Fragility of reconstructed temperature patterns over the Common Era: Implications for model evaluation. Geophys. Res. Lett., 42, 71627170, https://doi.org/10.1002/2015GL065265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watts, D. J., and S. H. Strogatz, 1998: Collective dynamics of “small-world” networks. Nature, 393, 440442 , https://doi.org/10.1038/30918.

  • Williams, C. N., M. J. Menne, and P. W. Thorne, 2012: Benchmarking the performance of pairwise homogenization of surface temperatures in the United States. J. Geophys. Res., 117, D05116, https://doi.org/10.1029/2011JD016761.

    • Search Google Scholar
    • Export Citation
  • Zerenner, T., P. Friederichs, K. Lehnertz, and A. Hense, 2014: A Gaussian graphical model approach to climate networks. Chaos, 24, 023103, https://doi.org/10.1063/1.4870402.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 567 0 0
Full Text Views 655 351 18
PDF Downloads 561 279 18