• Babar, B., R. Graversen, and T. Boström, 2019: Solar radiation estimation at high latitudes: Assessment of the CMSAF databases, ASR and ERA5. Sol. Energy, 182, 397411, https://doi.org/10.1016/j.solener.2019.02.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrisford, P., D. Dee, K. Fielding, M. Fuentes, P. Kallberg, S. Kobayashi, and S. Uppala, 2009: The ERA-Interim Archive. ERA Rep. Series 1, 16 pp., https://www.ecmwf.int/en/elibrary/8173-era-interim-archive.

  • Bland, J. M., and D. G. Altman, 1996: Statistics notes: Measurement error. BMJ, 312, 1654, https://doi.org/10.1136/bmj.312.7047.1654.

  • Dee, D. P., E. Källén, A. Simmons, and L. Haimberger, 2011a: Comments on “Reanalyses suitable for characterizing long-term trends.” Bull. Amer. Meteor. Soc., 92, 6570, https://doi.org/10.1175/2010BAMS3070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011b: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2016: Part II: Data assimilation. IFS Documentation CY41R2, ECMWF, 103 pp. https://www.ecmwf.int/node/16666.

  • Feng, F., and K. Wang, 2019: Determining factors of monthly to decadal variability in surface solar radiation in China: Evidences from current reanalyses. J. Geophys. Res. Atmos., 124, 91619182, https://doi.org/10.1029/2018JD030214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forbes, R. M., and M. Ahlgrimm, 2014: On the representation of high-latitude boundary layer mixed-phase cloud in the ECMWF global model. Mon. Wea. Rev., 142, 34253445, https://doi.org/10.1175/MWR-D-13-00325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, J., and O. Boucher, 2000: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys., 38, 513543, https://doi.org/10.1029/1999RG000078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Y., and K. Wang, 2019: Variability in direct and diffuse solar radiation across China from 1958 to 2017. Geophys. Res. Lett., 47, e2019GL084570, https://doi.org/10.1029/2019GL084570.

    • Search Google Scholar
    • Export Citation
  • He, Y., K. Wang, C. Zhou, and M. Wild, 2018: A revisit of global dimming and brightening based on the sunshine duration. Geophys. Res. Lett., 45, 42814289, https://doi.org/10.1029/2018GL077424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom, 7, https://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf.

  • Hersbach, H., and et al. , 2019: Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, No. 159, ECMWF, Reading, United Kingdom, 17–24, https://www.ecmwf.int/en/elibrary/19027-global-reanalysis-goodbye-era-interim-hello-era5.

  • Hess, M., P. Koepke, and I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831844, https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., L. J. Rikus, Y. Qin, and J. Katzfey, 2018: Assessing model performance of daily solar irradiance forecasts over Australia. Sol. Energy, 176, 615626, https://doi.org/10.1016/j.solener.2018.10.080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, B., Z. Xie, A. Dai, C. Shi, and F. Chen, 2013: Evaluation of satellite and reanalysis products of downward surface solar radiation over East Asia: Spatial and seasonal variations. J. Geophys. Res. Atmos., 118, 34313446, https://doi.org/10.1002/jgrd.50353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and M. Cai, 2003: Impact of urbanization and land-use change on climate. Nature, 423, 528531, https://doi.org/10.1038/nature01675.

  • Kennedy, A. D., X. Dong, B. Xi, S. Xie, Y. Zhang, and J. Chen, 2011: A comparison of MERRA and NARR reanalyses with the DOE ARM SGP data. J. Climate, 24, 45414557, https://doi.org/10.1175/2011JCLI3978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., C. Li, C. Zhao, and T. Su, 2016: Changes in surface aerosol extinction trends over China during 1980–2013 inferred from quality-controlled visibility data. Geophys. Res. Lett., 43, 87138719, https://doi.org/10.1002/2016GL070201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morcrette, J., H. W. Barker, J. Cole, M. J. Iacono, and R. Pincus, 2008: Impact of a new radiation package, McRad, in the ECMWF Integrated Forecasting System. Mon. Wea. Rev., 136, 47734798, https://doi.org/10.1175/2008MWR2363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muneer, T., and M. Gul, 2000: Evaluation of sunshine and cloud cover based models for generating solar radiation data. Energy Convers. Manage., 41, 461482, https://doi.org/10.1016/S0196-8904(99)00108-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanchez-Romero, A., A. Sanchez-Lorenzo, J. Calbó, J. González, and C. Azorin-Molina, 2014: The signal of aerosol-induced changes in sunshine duration records: A review of the evidence. J. Geophys. Res. Atmos., 119, 46574673, https://doi.org/10.1002/2013JD021393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, G.-Y., and et al. , 2008: Data quality assessment and the long-term trend of ground solar radiation in China. J. Appl. Meteor. Climatol., 47, 10061016, https://doi.org/10.1175/2007JAMC1493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, C. J., J. M. Bright, and R. Crook, 2017: Cloud cover effect of clear-sky index distributions and differences between human and automatic cloud observations. Sol. Energy, 144, 1021, https://doi.org/10.1016/j.solener.2016.12.055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanhill, G., and S. Cohen, 2001: Global dimming: A review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric. For. Meteor., 107, 255278, https://doi.org/10.1016/S0168-1923(00)00241-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, W. J., K. Yang, J. Qin, C. C. K. Cheng, and J. He, 2011: Solar radiation trend across China in recent decades: A revisit with quality-controlled data. Atmos. Chem. Phys., 11, 393406, https://doi.org/10.5194/acp-11-393-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., and R. S. Vose, 2010: Reanalyses suitable for characterizing long-term trends: Are they really achievable? Bull. Amer. Meteor. Soc., 91, 353362, https://doi.org/10.1175/2009BAMS2858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Urraca, R., T. Huld, F. J. Martinez-de-Pison, and A. Sanz-Garcia, 2018a: Sources of uncertainty in annual global horizontal irradiance data. Sol. Energy, 170, 873884, https://doi.org/10.1016/j.solener.2018.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Urraca, R., T. Huld, A. Gracia-Amillo, F. Javier Martinez-de-Pison, F. Kaspar, and A. Sanz-Garcia, 2018b: Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data. Sol. Energy, 164, 339354, https://doi.org/10.1016/j.solener.2018.02.059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., F. Sun, and W. Liu, 2018: Spatial and temporal patterns as well as major influencing factors of global and diffuse horizontal irradiance over China: 1960–2014. Sol. Energy, 159, 601615, https://doi.org/10.1016/j.solener.2017.11.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, K., 2014: Measurement biases explain discrepancies between the observed and simulated decadal variability of surface incident solar radiation. Sci. Rep., 4, 6144, https://doi.org/10.1038/srep06144.

    • Search Google Scholar
    • Export Citation
  • Wang, K., Q. Ma, Z. Li, and J. Wang, 2015: Decadal variability of surface incident solar radiation over China: Observations, satellite retrievals, and reanalyses. J. Geophys. Res. Atmos., 120, 65006514, https://doi.org/10.1002/2015JD023420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., H. Chen, Y. Wu, Y. Feng, and Q. Pu, 2010: New techniques for the detection and adjustment of shifts in daily precipitation data series. J. Appl. Meteor. Climatol., 49, 24162436, https://doi.org/10.1175/2010JAMC2376.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. Y., R. E. Dickinson, L. Su, C. Zhou, and K. Wang, 2018: PM2.5 pollution in China and how it has been exacerbated by terrain and meteorological conditions. Bull. Amer. Meteor. Soc., 99, 105119, https://doi.org/10.1175/BAMS-D-16-0301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and M. Wild, 2016: A new look at solar dimming and brightening in China. Geophys. Res. Lett., 43, 11 77711 785, https://doi.org/10.1002/2016GL071009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., 2009: Global dimming and brightening: A review. J. Geophys. Res., 114, D00D16, https://doi.org/10.1029/2008JD011470.

  • Wild, M., 2016: Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for global warming. Wiley Interdiscip. Rev.: Climate Change, 7, 91107, https://doi.org/10.1002/wcc.372.

    • Search Google Scholar
    • Export Citation
  • Wild, M., and E. Schmucki, 2010: Assessment of global dimming and brightening in IPCC-AR4/CMIP3 models and ERA40. Climate Dyn., 37, 16711688, https://doi.org/10.1007/s00382-010-0939-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, X., P. Wang, H. Chen, and F. Liang, 2006: Analysis of downwelling surface solar radiation in China from National Centers for Environmental Prediction reanalysis, satellite estimates, and surface observations. J. Geophys. Res., 111, D09103, https://doi.org/10.1029/2005JD006405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., K. Masuda, Y. Ishigooka, T. Kuwagata, S. Haginoya, T. Hayasaka, and T. Yasunari, 2011: Estimation and verification of daily surface shortwave flux over China. J. Meteor. Soc. Japan, 89A, 225238, https://doi.org/10.2151/jmsj.2011-A14.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., G. W. Huang, and N. Tamai, 2001: A hybrid model for estimating global solar radiation. Sol. Energy, 70, 1322, https://doi.org/10.1016/S0038-092X(00)00121-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., T. Koike, and B. S. Ye, 2006: Improving estimation of hourly, daily, and monthly solar radiation by importing global data sets. Agric. For. Meteor., 137, 4355, https://doi.org/10.1016/j.agrformet.2006.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., B. Ding, J. Qin, W. Tang, N. Lu, and C. Lin, 2012: Can aerosol loading explain the solar dimming over the Tibetan Plateau? Geophys. Res. Lett., 39, L20710, https://doi.org/10.1029/2012GL053733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., X. L. Wang, and M. Wild, 2018: Homogenization and trend analysis of the 1958–2016 in situ surface solar radiation records in China. J. Climate, 31, 45294541, https://doi.org/10.1175/JCLI-D-17-0891.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., X. L. Wang, and M. Wild, 2019: Causes of dimming and brightening in China inferred from homogenized daily clear-sky and all-sky in situ surface solar radiation records (1958–2016). J. Climate, 32, 59015913, https://doi.org/10.1175/JCLI-D-18-0666.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Q., A. Sanchez-Lorenzo, M. Wild, D. Folini, K. Fraedrich, G. Ren, and S. Kang, 2013: Decadal variation of surface solar radiation in the Tibetan Plateau from observations, reanalysis and model simulations. Climate Dyn., 40, 20732086, https://doi.org/10.1007/s00382-012-1383-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., S. Liang, G. Wang, Y. Yao, B. Jiang, and J. Cheng, 2016: Evaluation of the reanalysis surface incident shortwave radiation products from NCEP, ECMWF, GSFC, and JMA using satellite and surface observations. Remote Sens., 8, 225, https://doi.org/10.3390/rs8030225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., Y. Chen, J. Li, H. Letu, Y. Su, T. Chen, and X. Wu, 2019: Fifteen-year statistical analysis of cloud characteristics over China using Terra and Aqua Moderate Resolution Imaging Spectroradiometer observations. Int. J. Climatol., 39, 26122629, https://doi.org/10.1002/joc.5975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, L., X. Lee, and S. Liu, 2013: Correcting surface solar radiation of two data assimilation systems against FLUXNET observations in North America. J. Geophys. Res. Atmos., 118, 95529564, https://doi.org/10.1002/jgrd.50697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., and K. Wang, 2016: Evaluation of surface fluxes in ERA-Interim using flux tower data. J. Climate, 29, 15731582, https://doi.org/10.1175/JCLI-D-15-0523.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., K. Wang, and Q. Ma, 2017: Evaluation of eight current reanalyses in simulating land surface temperature from 1979 to 2003 in China. J. Climate, 30, 73797398, https://doi.org/10.1175/JCLI-D-16-0903.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., Y. He, and K. Wang, 2018: On the suitability of current atmospheric reanalyses for regional warming studies over China. Atmos. Chem. Phys., 18, 81138136, https://doi.org/10.5194/acp-18-8113-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., H. Che, X. Xia, X. Yu, and J. Wang, 2019: Analysis of water vapor effects on aerosol properties and direct radiative forcing in China. Sci. Total Environ., 650, 257266, https://doi.org/10.1016/j.scitotenv.2018.09.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 117 117 117
Full Text Views 38 38 38
PDF Downloads 47 47 47

Improvement of ERA5 over ERA-Interim in Simulating Surface Incident Solar Radiation throughout China

View More View Less
  • 1 State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
  • | 2 College of Forestry, Beijing Forestry University, Beijing, China
© Get Permissions
Restricted access

Abstract

Surface incident solar radiation (Rs) is important for providing essential information on climate change. Existing studies have shown that the Rs values from current reanalyses are significantly overestimated throughout China. The European Centre for Medium-Range Weather Forecasts (ECMWF) recently released the fifth generation of atmospheric reanalysis (i.e., ERA5) with a much higher spatiotemporal resolution and a major upgrade compared to its predecessor, ERA-Interim. This study is to verify whether ERA5 can improve the Rs simulation using sunshine duration–derived Rs values at ~2200 stations over China from 1979 to 2014 as reference data. Compared with the observed multiyear national mean, the Rs overestimation is reduced from 15.88 W m−2 in ERA-Interim to 10.07 W m−2 in ERA5. From 1979 to 1993, ERA-Interim (−1.99 W m−2 decade−1; p < 0.05) and ERA5 (−2.42 W m−2 decade−1; p < 0.05) estimates of Rs in China continued to decrease and the decline of the latter is closer to the observed. After 1993, they both show a strong brightening (i.e., 2.26 W m−2 decade−1 in ERA-Interim and 1.49 W m−2 decade−1 in ERA5) but observations show a nonsignificant increase by 0.30 W m−2 decade−1. Due to the improvement of total cloud cover (TCC) simulation by ERA5, its Rs trend bias induced by the TCC trend bias is smaller than that in ERA-Interim. In addition, the reason why the simulation trend in ERA5 remains biased might be that ERA5 still ignores aerosol changes on interannual or decadal time scales. Therefore, subsequent reanalysis products still need to improve their simulation of clouds, water vapor, and aerosol, especially in aerosol direct and indirect effects on Rs.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0300.s1.

Corresponding author: Kaicun Wang, kcwang@bnu.edu.cn

Abstract

Surface incident solar radiation (Rs) is important for providing essential information on climate change. Existing studies have shown that the Rs values from current reanalyses are significantly overestimated throughout China. The European Centre for Medium-Range Weather Forecasts (ECMWF) recently released the fifth generation of atmospheric reanalysis (i.e., ERA5) with a much higher spatiotemporal resolution and a major upgrade compared to its predecessor, ERA-Interim. This study is to verify whether ERA5 can improve the Rs simulation using sunshine duration–derived Rs values at ~2200 stations over China from 1979 to 2014 as reference data. Compared with the observed multiyear national mean, the Rs overestimation is reduced from 15.88 W m−2 in ERA-Interim to 10.07 W m−2 in ERA5. From 1979 to 1993, ERA-Interim (−1.99 W m−2 decade−1; p < 0.05) and ERA5 (−2.42 W m−2 decade−1; p < 0.05) estimates of Rs in China continued to decrease and the decline of the latter is closer to the observed. After 1993, they both show a strong brightening (i.e., 2.26 W m−2 decade−1 in ERA-Interim and 1.49 W m−2 decade−1 in ERA5) but observations show a nonsignificant increase by 0.30 W m−2 decade−1. Due to the improvement of total cloud cover (TCC) simulation by ERA5, its Rs trend bias induced by the TCC trend bias is smaller than that in ERA-Interim. In addition, the reason why the simulation trend in ERA5 remains biased might be that ERA5 still ignores aerosol changes on interannual or decadal time scales. Therefore, subsequent reanalysis products still need to improve their simulation of clouds, water vapor, and aerosol, especially in aerosol direct and indirect effects on Rs.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0300.s1.

Corresponding author: Kaicun Wang, kcwang@bnu.edu.cn
Save