Abstract
For the last few decades the Northern Hemisphere midlatitudes have seen an increasing number of temperature extreme events. It has been suggested that some of these extremes are related to planetary wave activity. In this study we identify wave propagation regions at 300 hPa using the ERA-Interim dataset from 1980 to 2017 and link them to temperature extremes in densely populated regions of the Northern Hemisphere. Most studies have used background flow fields at monthly or seasonal scale to investigate wave propagation. For a phenomenon that is influenced by threshold incidents and nonlinear processes, this can distort the net Rossby wave signal. A novel aspect of our investigation lies in the use of daily data to study wave propagation allowing it to be diagnosed for limited but important periods across a wider range of latitudes, including the polar region. We show that winter temperature extremes in the midlatitudes can be associated with circulation anomalies in both the Arctic and the tropics, while the relative importance of these areas differs according to the specific midlatitude region. In particular, wave trains connecting the tropical Pacific and Atlantic may be associated with temperature anomalies in North America and Siberia. Arctic seas are markedly important for Eurasian regions. Analysis of synoptic temperature extremes suggests that pre-existing local temperature anomalies play a key role in the development of those extremes, as well as amplification of large-scale wave trains. We also demonstrate that warm Arctic regions can create cold outbreaks in both Siberia and North America.
Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0288.s1.
© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).
Rudeva ORCID: 0000-0001-9851-8198.
Simmonds ORCID: 0000-0002-4479-3255.