Midlatitude Winter Extreme Temperature Events and Connections with Anomalies in the Arctic and Tropics

Irina Rudeva Australian Bureau of Meteorology, Melbourne, Victoria, Australia
School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Irina Rudeva in
Current site
Google Scholar
PubMed
Close
and
Ian Simmonds School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Ian Simmonds in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

For the last few decades the Northern Hemisphere midlatitudes have seen an increasing number of temperature extreme events. It has been suggested that some of these extremes are related to planetary wave activity. In this study we identify wave propagation regions at 300 hPa using the ERA-Interim dataset from 1980 to 2017 and link them to temperature extremes in densely populated regions of the Northern Hemisphere. Most studies have used background flow fields at monthly or seasonal scale to investigate wave propagation. For a phenomenon that is influenced by threshold incidents and nonlinear processes, this can distort the net Rossby wave signal. A novel aspect of our investigation lies in the use of daily data to study wave propagation allowing it to be diagnosed for limited but important periods across a wider range of latitudes, including the polar region. We show that winter temperature extremes in the midlatitudes can be associated with circulation anomalies in both the Arctic and the tropics, while the relative importance of these areas differs according to the specific midlatitude region. In particular, wave trains connecting the tropical Pacific and Atlantic may be associated with temperature anomalies in North America and Siberia. Arctic seas are markedly important for Eurasian regions. Analysis of synoptic temperature extremes suggests that pre-existing local temperature anomalies play a key role in the development of those extremes, as well as amplification of large-scale wave trains. We also demonstrate that warm Arctic regions can create cold outbreaks in both Siberia and North America.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0288.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Rudeva ORCID: 0000-0001-9851-8198.

Simmonds ORCID: 0000-0002-4479-3255.

Corresponding author: Irina Rudeva, irina.rudeva@bom.gov.au

Abstract

For the last few decades the Northern Hemisphere midlatitudes have seen an increasing number of temperature extreme events. It has been suggested that some of these extremes are related to planetary wave activity. In this study we identify wave propagation regions at 300 hPa using the ERA-Interim dataset from 1980 to 2017 and link them to temperature extremes in densely populated regions of the Northern Hemisphere. Most studies have used background flow fields at monthly or seasonal scale to investigate wave propagation. For a phenomenon that is influenced by threshold incidents and nonlinear processes, this can distort the net Rossby wave signal. A novel aspect of our investigation lies in the use of daily data to study wave propagation allowing it to be diagnosed for limited but important periods across a wider range of latitudes, including the polar region. We show that winter temperature extremes in the midlatitudes can be associated with circulation anomalies in both the Arctic and the tropics, while the relative importance of these areas differs according to the specific midlatitude region. In particular, wave trains connecting the tropical Pacific and Atlantic may be associated with temperature anomalies in North America and Siberia. Arctic seas are markedly important for Eurasian regions. Analysis of synoptic temperature extremes suggests that pre-existing local temperature anomalies play a key role in the development of those extremes, as well as amplification of large-scale wave trains. We also demonstrate that warm Arctic regions can create cold outbreaks in both Siberia and North America.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0288.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Rudeva ORCID: 0000-0001-9851-8198.

Simmonds ORCID: 0000-0002-4479-3255.

Corresponding author: Irina Rudeva, irina.rudeva@bom.gov.au

Supplementary Materials

    • Supplemental Materials (PDF 4.43 MB)
Save
  • Barrett, B. S., 2019: Connections between the Madden–Julian oscillation and surface temperatures in winter 2018 over eastern North America. Atmos. Sci. Lett., 20, e869, https://doi.org/10.1002/asl.869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackburn, M., J. Methven, and N. Roberts, 2008: Large-scale context for the UK floods in summer 2007. Weather, 63, 280288, https://doi.org/10.1002/wea.322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackport, R., and J. A. Screen, 2020: Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Sci. Adv., 6, eaay2880, https://doi.org/10.1126/sciadv.aay2880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackport, R., J. A. Screen, K. van der Wiel, and R. Bintanja, 2019: Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nat. Climate Change, 9, 697704, https://doi.org/10.1038/s41558-019-0551-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Cassou, C., L. Terray, and A. S. Phillips, 2005: Tropical Atlantic influence on European heat waves. J. Climate, 18, 28052811, https://doi.org/10.1175/JCLI3506.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and I. Orlanski, 1994: On energy flux and group velocity of waves in baroclinic flows. J. Atmos. Sci., 51, 38233828, https://doi.org/10.1175/1520-0469(1994)051<3823:OEFAGV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Climate Change, 10, 2029, https://doi.org/10.1038/s41558-019-0662-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., V. Petoukhov, S. Rahmstorf, S. Petri, and H. J. Schellnhuber, 2014: Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer. Proc. Natl. Acad. Sci. USA, 111, 12 33112 336, https://doi.org/10.1073/pnas.1412797111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., J. Lehmann, and J. Beckmann, 2015: The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science, 348, 324327, https://doi.org/10.1126/science.1261768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., G. Di Capua, S. Vavrus, L. Wang, and S. Wang, 2018: The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun., 9, 2959, https://doi.org/10.1038/s41467-018-05256-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and M. Song, 2020: Little influence of Arctic amplification on mid-latitude climate. Nat. Climate Change, 10, 231237, https://doi.org/10.1038/s41558-020-0694-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., J. M. Wallace, D. S. Battisti, E. J. Steig, A. J. E. Gallant, H.-J. Kim, and L. Geng, 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509, 209212, https://doi.org/10.1038/nature13260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., 2002: Influence of soil moisture on the Asian and African monsoon. Part II: Interannual variability. J. Climate, 15, 701720, https://doi.org/10.1175/1520-0442(2002)015<0701:IOSMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engel, C. B., T. P. Lane, M. J. Reeder, and M. Rezny, 2013: The meteorology of Black Saturday. Quart. J. Roy. Meteor. Soc., 139, 585599, https://doi.org/10.1002/qj.1986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E., and R. Knutti, 2015: Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Climate Change, 5, 560564, https://doi.org/10.1038/nclimate2617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freitas, A. C. V., and V. B. Rao, 2011: Multidecadal and interannual changes of stationary Rossby waves. Quart. J. Roy. Meteor. Soc., 137, 21572173, https://doi.org/10.1002/qj.894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freitas, A. C. V., and T. Ambrizzi, 2012: Changes in the austral winter Hadley circulation and the impact on stationary Rossby waves propagation. Adv. Meteor., 2012, 980816, https://doi.org/10.1155/2012/980816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freitas, A. C. V., and V. B. Rao, 2014: Global changes in propagation of stationary waves in a warming scenario. Quart. J. Roy. Meteor. Soc., 140, 364383, https://doi.org/10.1002/qj.2151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freitas, A. C. V., J. S. Frederiksen, T. J. O’Kane, and T. Ambrizzi, 2017: Simulated austral winter response of the Hadley circulation and stationary Rossby wave propagation to a warming climate. Climate Dyn., 49, 521545, https://doi.org/10.1007/s00382-016-3356-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, F., and Coauthors, 2020: Impact of sea ice decline in the Arctic Ocean on the number of extreme low-temperature days over China. Int. J. Climatol., 40, 14211434, https://doi.org/10.1002/joc.6277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, T., S. B. Feldstein, and S. Lee, 2017: The role of downward infrared radiation in the recent Arctic winter warming trend. J. Climate, 30, 49374949, https://doi.org/10.1175/JCLI-D-16-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goss, M., S. B. Feldstein, and S. Lee, 2016: Stationary wave interference and its relation to tropical convection and Arctic warming. J. Climate, 29, 13691389, https://doi.org/10.1175/JCLI-D-15-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. Large-Scale Dynamical Processes in the Atmosphere, B. J. Hoskins and R. P. Pearce, Eds., Academic Press, 127–168.

  • Hoskins, B. J., 2013: The potential for skill across the range of the seamless weather–climate prediction problem: A stimulus for our science. Quart. J. Roy. Meteor. Soc., 139, 573584, https://doi.org/10.1002/qj.1991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huntingford, C., and Coauthors, 2014: Potential influences on the United Kingdom’s floods of winter 2013/14. Nat. Climate Change, 4, 769777, https://doi.org/10.1038/nclimate2314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, O., M.-K. Sung, K. Sato, Y.-K. Lim, S.-J. Kim, E.-H. Baek, J.-H. Jeong, and B.-M. Kim, 2017: How does the SST variability over the western North Atlantic Ocean control Arctic warming over the Barents-Kara Seas? Environ. Res. Lett., 12, 034021, https://doi.org/10.1088/1748-9326/aa5f3b.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karoly, D., 1983: Rossby wave propagation in a barotropic atmosphere. Dyn. Atmos. Oceans, 7, 111125, https://doi.org/10.1016/0377-0265(83)90013-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karpechko, A. Y., P. Hitchcock, D. H. W. Peters, and A. Schneidereit, 2017: Predictability of downward propagation of major sudden stratospheric warmings. Quart. J. Roy. Meteor. Soc., 143, 14591470, https://doi.org/10.1002/qj.3017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, A. D., A. H. Butler, M. Jucker, N. O. Earl, and I. Rudeva, 2019: Observed relationships between sudden stratospheric warmings and European climate extremes. J. Geophys. Res. Atmos., 124, 13 94313 961, https://doi.org/10.1029/2019JD030480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodera, K., H. Mukougawa, P. Maury, M. Ueda, and C. Claud, 2016: Absorbing and reflecting sudden stratospheric warming events and their relationship with tropospheric circulation. J. Geophys. Res. Atmos., 121, 8094, https://doi.org/10.1002/2015JD023359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kornhuber, K., V. Petoukhov, S. Petri, S. Rahmstorf, and D. Coumou, 2016: Evidence for wave resonance as a key mechanism for generating high-amplitude quasi-stationary waves in boreal summer. Climate Dyn., 49, 19611979, https://doi.org/10.1007/s00382-016-3399-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kornhuber, K., V. Petoukhov, D. Karoly, S. Petri, S. Rahmstorf, and D. Coumou, 2017: Summertime planetary wave resonance in the Northern and Southern Hemispheres. J. Climate, 30, 61336150. https://doi.org/10.1175/JCLI-D-16-0703.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kornhuber, K., S. M. Osprey, D. Coumou, S. Petri, V. Petoukhov, S. Rahmstorf, and L. Gray, 2019: Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ. Res. Lett., 14, 054002, https://doi.org/10.1088/1748-9326/ab13bf.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kornhuber, K., D. Coumou, E. Vogel, C. Lesk, J. F. Donges, J. Lehmann, and R. M. Horton, 2020: Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nat. Climate Change, 10, 4853, https://doi.org/10.1038/s41558-019-0637-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and V. Kumar, 2017: Prediction of a thermodynamic wave train from the monsoon to the Arctic following extreme rainfall events. Climate Dyn., 48, 23152337, https://doi.org/10.1007/s00382-016-3207-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Gong, S. B. Feldstein, J. Screen, and I. Simmonds, 2017: Revisiting the cause of the 1989–2009 Arctic surface warming using the surface energy budget: Downward infrared radiation dominates the surface fluxes. Geophys. Res. Lett., 44, 10 65410 661, https://doi.org/10.1002/2017GL075375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehmann, J., D. Coumou, and K. Frieler, 2015: Increased record-breaking precipitation events under global warming. Climatic Change, 132, 501515, https://doi.org/10.1007/s10584-015-1434-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., Y. Yao, I. Simmonds, D. Luo, L. Zhong, and X. Chen, 2020a: Collaborative impact of the NAO and atmospheric blocking on European heatwaves, with a focus on the hot summer of 2018. Environ. Res. Lett., 15, 114003, https://doi.org/10.1088/1748-9326/aba6ad.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., D. Luo, I. Simmonds, A. Dai, L. Zhong and Y. Yao, 2020b: Anchoring of atmospheric teleconnection patterns by Arctic sea ice loss and its link to winter cold anomalies in East Asia. Int. J. Climatol., 41, 547558, https://doi.org/10.1002/joc.6637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, B., L. Wu, D. Luo, A. Dai, and I. Simmonds, 2019: The winter midlatitude–Arctic interaction: Effects of North Atlantic SST and high-latitude blocking on Arctic sea ice and Eurasian cooling. Climate Dyn., 52, 29813004, https://doi.org/10.1007/s00382-018-4301-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., Y. Xiao, Y. Diao, A. Dai, C. L. E. Franzke, and I. Simmonds, 2016: Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part II: The link to the North Atlantic Oscillation. J. Climate, 29, 39493971, https://doi.org/10.1175/JCLI-D-15-0612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., X. Chen, A. Dai, and I. Simmonds, 2018: Changes in atmospheric blocking circulations linked with winter Arctic warming: A new perspective. J. Climate, 31, 76617678, https://doi.org/10.1175/JCLI-D-18-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., X. Chen, J. Overland, I. Simmonds, Y. Wu, and P. Zhang, 2019: Weakened potential vorticity barrier linked to recent winter Arctic sea ice loss and midlatitude cold extremes. J. Climate, 32, 42354261, https://doi.org/10.1175/JCLI-D-18-0449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manney, G. L., and M. I. Hegglin, 2018: Seasonal and regional variations of long-term changes in upper-tropospheric jets from reanalyses. J. Climate, 31, 423448, https://doi.org/10.1175/JCLI-D-17-0303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsumura, S., and Y. Kosaka, 2019: Arctic-Eurasian climate linkage induced by tropical ocean variability. Nat. Comms., 10, 3441, https://doi.org/10.1038/s41467-019-11359-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCusker, K., J. Fyfe, and M. Sigmond, 2016: Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss. Nat. Geosci., 9, 838842, https://doi.org/10.1038/ngeo2820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntosh, P. C., and H. H. Hendon, 2018: Understanding Rossby wave trains forced by the Indian Ocean Dipole. Climate Dyn., 50, 27832798, https://doi.org/10.1007/s00382-017-3771-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meleshko, V. P., V. M. Kattsov, V. M. Mirvis, A. V. Baidin, T. V. Pavlova, and V. A. Govorkova, 2018: Is there a link between Arctic sea ice loss and increasing frequency of extremely cold winters in Eurasia and North America? Synthesis of current research. Russ. Meteor. Hydrol., 43, 743755, https://doi.org/10.3103/S1068373918110055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Messori, G., and R. Caballero, 2015: On double Rossby wave breaking in the North Atlantic. J. Geophys. Res. Atmos., 120, 11 12911 150, https://doi.org/10.1002/2015JD023854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., Y. Kosaka, M. Watanabe, H. Nakamura, and M. Kimoto, 2019: A reconciled estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling. Nat. Climate Change, 9, 123129, https://doi.org/10.1038/s41558-018-0379-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., T. Woollings, L. Zanna, and A. Weisheimer, 2018: The impact of tropical precipitation on summertime Euro-Atlantic circulation via a circumglobal wave train. J. Climate, 31, 64816504, https://doi.org/10.1175/JCLI-D-17-0451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. Katzfey, 1991: The life cycle of a cyclone wave in the Southern Hemisphere. Part I: Eddy energy budget. J. Atmos. Sci., 48, 19721998, https://doi.org/10.1175/1520-0469(1991)048<1972:TLCOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Outten, S. D., and I. Esau, 2012: A link between Arctic sea ice and recent cooling trends over Eurasia. Climatic Change, 110, 10691075, https://doi.org/10.1007/s10584-011-0334-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T., 2014: Record-breaking winters and global climate change. Science, 344, 803804, https://doi.org/10.1126/science.1255147.

  • Pedersen, R. A., I. Cvijanovic, P. L. Langen, and B. M. Vinther, 2016: The impact of regional Arctic sea ice loss on atmospheric circulation and the NAO. J. Climate, 29, 889902, https://doi.org/10.1175/JCLI-D-15-0315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, https://doi.org/10.1029/2009JD013568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., S. Rahmstorf, S. Petri, and H. J. Schellnhuber, 2013: Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proc. Natl. Acad. Sci. USA, 110, 53365341, https://doi.org/10.1073/pnas.1222000110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., S. Petri, S. Rahmstorf, D. Coumou, K. Kornhuber, and J. Schellnhuber, 2016: Role of quasiresonant planetary wave dynamics in recent boreal spring-to-autumn extreme events. Proc. Natl. Acad. Sci. USA, 113, 68626867, https://doi.org/10.1073/pnas.1606300113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., A. V. Pnyushkov, and L. A. Timokhov, 2012: Warming of the intermediate Atlantic water of the Arctic Ocean in the 2000s. J. Climate, 25, 83628370, https://doi.org/10.1175/JCLI-D-12-00266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringgaard, I. M., S. Yang, E. Kaas, and J. H. Christensen, 2020: Barents-Kara sea ice and European winters in EC-Earth. Climate Dyn., 54, 33233338, https://doi.org/10.1007/s00382-020-05174-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Röthlisberger, M., Pfahl, S., and Martius, O., 2016: Regional-scale jet waviness modulates the occurrence of midlatitude weather extremes. Geophys. Res. Lett., 43, 10 98910 997, https://doi.org/10.1002/2016GL070944..

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudeva, I., and I. Simmonds, 2015: Variability and trends of global atmospheric frontal activity and links with large-scale modes of variability. J. Climate, 28, 33113330, https://doi.org/10.1175/JCLI-D-14-00458.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudeva, I., I. Simmonds, D. Crock, and G. Boschat, 2019: Midlatitude fronts and variability in the Southern Hemisphere tropical width. J. Climate, 32, 82438260, https://doi.org/10.1175/JCLI-D-18-0782.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saeed, S., N. Van Lipzig, W. A. Müller, F. Saeed, and D. Zanchettin, 2014: Influence of the circumglobal wave-train on European summer precipitation. Climate Dyn., 43, 503515, https://doi.org/10.1007/s00382-013-1871-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, K., J. Inoue, and M. Watanabe, 2014: Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter. Environ. Res. Lett., 9, 084009, https://doi.org/10.1088/1748-9326/9/8/084009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2014: Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Climate Change, 4, 704709, https://doi.org/10.1038/nclimate2271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, I. Simmonds, and R. Tomas, 2014: Atmospheric impacts of Arctic sea-ice loss, 1979–2009: Separating forced change from atmospheric internal variability. Climate Dyn., 43, 333344, https://doi.org/10.1007/s00382-013-1830-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, and L. Sun, 2015: Reduced risk of North American cold extremes due to continued Arctic sea ice loss. Bull. Amer. Meteor. Soc., 96, 14891503, https://doi.org/10.1175/BAMS-D-14-00185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., T. J. Bracegirdle, and I. Simmonds, 2018: Polar climate change as manifest in atmospheric circulation. Curr. Climate Change Rep., 4, 383395, https://doi.org/10.1007/s40641-018-0111-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semmler, T., R. McGrath, and S. Wang, 2012: The impact of Arctic sea ice on the Arctic energy budget and on the climate of the northern mid-latitudes. Climate Dyn., 39, 26752694, https://doi.org/10.1007/s00382-012-1353-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semmler, T., F. Pithan, and T. Jung, 2020: Quantifying two-way influences between the Arctic and mid-latitudes through regionally increased CO2 concentrations in coupled climate simulations. Climate Dyn., 54, 33073321, https://doi.org/10.1007/s00382-020-05171-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., 2015: Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35-year period 1979–2013. Ann. Glaciol., 56, 1828, https://doi.org/10.3189/2015AoG69A909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., 2018: What causes extreme hot days in Europe? Environ. Res. Lett., 13, 071001, https://doi.org/10.1088/1748-9326/aacc78.

  • Simmonds, I., and P. D. Govekar, 2014: What are the physical links between Arctic sea ice loss and Eurasian winter climate? Environ. Res. Lett., 9, 101003, https://doi.org/10.1088/1748-9326/9/10/101003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stadtherr, L., D. Coumou, V. Petoukhov, S. Petri, and S. Rahmstorf, 2016: Record Balkan floods of 2014 linked to planetary wave resonance. Sci. Adv., 2, e1501428, https://doi.org/10.1126/sciadv.1501428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2005: Mechanisms of intraseasonal amplification of the cold Siberian high. J. Atmos. Sci., 62, 44234440, https://doi.org/10.1175/JAS3629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Q., X. Zhang, X. Yang, and J. A. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett., 8, 014036, https://doi.org/10.1088/1748-9326/8/1/014036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., and G. Branstator, 2019: Amplification of waveguide teleconnections in the boreal summer. Curr. Climate Change Rep., 5, 421432, https://doi.org/10.1007/s40641-019-00150-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., G. Branstator, H. Wang, G. A. Meehl, and W. M. Washington, 2013: Probability of U.S. heat waves affected by a subseasonal planetary wave pattern. Nat. Geosci., 6, 10561061, https://doi.org/10.1038/ngeo1988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K., A. Dai, G. van der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and J. Sheffield, 2014: Global warming and changes in drought. Nat. Climate Change, 4, 1722, https://doi.org/10.1038/nclimate2067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vihma, T., 2014: Effects of Arctic Sea ice decline on weather and climate: A review. Surv. Geophys., 35, 11751214, https://doi.org/10.1007/s10712-014-9284-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vihma, T., and Coauthors, 2020: Effects of the tropospheric large-scale circulation on European winter temperatures during the period of amplified Arctic warming. Int. J. Climatol., 40, 509529, https://doi.org/10.1002/joc.6225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., W. L. Chapman, F. Fetterer, and S. Stewart, 2019: Gridded Monthly Sea Ice Extent and Concentration, 1850 onward, version 2. National Snow and Ice Data Center, accessed 14 December 2018, https://doi.org/10.7265/jj4s-tq79.

    • Crossref
    • Export Citation
  • Wang, H., S. D. Schubert, R. D. Koster, and Y. Change, 2019: Phase-locking of the boreal summer atmospheric response to dry land surface anomalies in the Northern Hemisphere. J. Climate, 32, 10811099, https://doi.org/10.1175/JCLI-D-18-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., L. E. Hipps, R. R. Gillies, X. Jiang, and A. Moller, 2010: Circumglobal teleconnection and early summer rainfall in the US Intermountain West. Theor. Appl. Climatol., 102, 245252, https://doi.org/10.1007/s00704-010-0260-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, R. C. J., R. H. White, and X. J. Levine, 2019: Northern Hemisphere stationary waves in a changing climate. Curr. Climate Change Rep., 5, 372389, https://doi.org/10.1007/s40641-019-00147-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wirth, V., 2020: Waveguidability of idealized midlatitude jets and the limitations of ray tracing theory. Wea. Climate Dyn., 1, 111125, https://doi.org/10.5194/wcd-1-111-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation