Protected Convection as a Metric of Dry Air Influence on Precipitation

Fiaz Ahmed Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Fiaz Ahmed in
Current site
Google Scholar
PubMed
Close
and
J. David Neelin Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by J. David Neelin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Entrainment of dry tropospheric air can dilute cloud buoyancies and strongly affect the occurrence and intensity of convection. To measure this dry air influence on tropical precipitation, rainfall values that would occur when convection is “protected” from dry air dilution are estimated. An empirical relationship between tropical oceanic precipitation and entraining buoyancy in the lower troposphere (from the surface to 600 hPa) is leveraged. Protected buoyancies are computed by allowing a plume model to entrain saturated air at environmental temperature. These buoyancies are then used to estimate precipitation from protected convection. In most regions, the protected precipitation greatly exceeds the observed precipitation. Warm waters adjoining continents display striking disparities between observed and protected rainfall pointing to rainfall climatologies severely limited by dry air. The most prominent of these regions include the Red Sea and the Persian Gulf, followed by the Caribbean Sea, the Gulf of Mexico, and the seas surrounding the Maritime Continent. We test if similar large precipitation values are realizable in the Community Atmospheric Model (CAM5), wherein the parameterized convection in small (~2° × 2°) pockets is allowed to only entrain saturated air. The precipitation within these pockets shows strong enhancement that is maintained over time, and is compensated by slight reductions in neighboring regions. In the model, protecting convection yields larger precipitation values over ocean than over land; protected precipitation also intensifies in a uniform SST warming experiment. The model experiments suggest that protected pockets in numerical simulations could be used to mimic the consequences of meteorological protection—from closed circulation or moisture shielding effects—that generate extreme precipitation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fiaz Ahmed, fiaz@ucla.edu

Abstract

Entrainment of dry tropospheric air can dilute cloud buoyancies and strongly affect the occurrence and intensity of convection. To measure this dry air influence on tropical precipitation, rainfall values that would occur when convection is “protected” from dry air dilution are estimated. An empirical relationship between tropical oceanic precipitation and entraining buoyancy in the lower troposphere (from the surface to 600 hPa) is leveraged. Protected buoyancies are computed by allowing a plume model to entrain saturated air at environmental temperature. These buoyancies are then used to estimate precipitation from protected convection. In most regions, the protected precipitation greatly exceeds the observed precipitation. Warm waters adjoining continents display striking disparities between observed and protected rainfall pointing to rainfall climatologies severely limited by dry air. The most prominent of these regions include the Red Sea and the Persian Gulf, followed by the Caribbean Sea, the Gulf of Mexico, and the seas surrounding the Maritime Continent. We test if similar large precipitation values are realizable in the Community Atmospheric Model (CAM5), wherein the parameterized convection in small (~2° × 2°) pockets is allowed to only entrain saturated air. The precipitation within these pockets shows strong enhancement that is maintained over time, and is compensated by slight reductions in neighboring regions. In the model, protecting convection yields larger precipitation values over ocean than over land; protected precipitation also intensifies in a uniform SST warming experiment. The model experiments suggest that protected pockets in numerical simulations could be used to mimic the consequences of meteorological protection—from closed circulation or moisture shielding effects—that generate extreme precipitation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fiaz Ahmed, fiaz@ucla.edu
Save
  • Adames, Á. F., S. W. Powell, F. Ahmed, V. C. Mayta, and J. D. Neelin, 2021: Tropical precipitation evolution in a buoyancy-budget framework. J. Atmos. Sci., 78, 509528, https://doi.org/10.1175/JAS-D-20-0074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahmed, F., and C. Schumacher, 2015: Convective and stratiform components of the precipitation–moisture relationship. Geophys. Res. Lett., 42, 10 45310 462, https://doi.org/10.1002/2015GL066957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahmed, F., and C. Schumacher, 2017: Geographical differences in the tropical precipitation–moisture relationship and rain intensity onset. Geophys. Res. Lett., 44, 11141122, https://doi.org/10.1002/2016GL071980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahmed, F., and J. D. Neelin, 2018: Reverse engineering the tropical precipitation–buoyancy relationship. J. Atmos. Sci., 75, 15871608, https://doi.org/10.1175/JAS-D-17-0333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahmed, F., Á. F. Adames, and J. D. Neelin, 2020: Deep convective adjustment of temperature and moisture. J. Atmos. Sci., 77, 21632186, https://doi.org/10.1175/JAS-D-19-0227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Almazroui, M., 2011: Calibration of TRMM rainfall climatology over Saudi Arabia during 1998–2009. Atmos. Res., 99, 400414, https://doi.org/10.1016/j.atmosres.2010.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Almazroui, M., M. Nazrul Islam, H. Athar, P. D. Jones, and M. A. Rahman, 2012: Recent climate change in the Arabian Peninsula: Annual rainfall and temperature analysis of Saudi Arabia for 1978–2009. Int. J. Climatol., 32, 953966, https://doi.org/10.1002/joc.3446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., P. M. Forster, and J. M. Gregory, 2009: A surface energy perspective on climate change. J. Climate, 22, 25572570, https://doi.org/10.1175/2008JCLI2759.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, J. M., 1948: A note on cumulus growth in a nonsaturated environment. J. Meteor., 5, 103107, https://doi.org/10.1175/1520-0469(1948)005<0103:ANOCGI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, T., C. S. Bretherton, C. Hohenegger, and B. Stevens, 2018: Estimating bulk entrainment with unaggregated and aggregated convection. Geophys. Res. Lett., 45, 455462, https://doi.org/10.1002/2017GL076640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergemann, M., and C. Jakob, 2016: How important is tropospheric humidity for coastal rainfall in the tropics? Geophys. Res. Lett., 43, 58605868, https://doi.org/10.1002/2016GL069255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1975: Parametric interpretation of trade-wind cumulus budget studies. J. Atmos. Sci., 32, 19341945, https://doi.org/10.1175/1520-0469(1975)032<1934:PIOTWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and C. Jakob, 2002: Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBA data. J. Geophys. Res., 107, 8045, https://doi.org/10.1029/2001JD000427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., E. W. McCaul, G. P. Byrd, and G. R. Woodall, 1988: Mobile sounding observations of a tornadic storm near the dryline: The Canadian, Texas storm of 7 May 1986. Mon. Wea. Rev., 116, 17901804, https://doi.org/10.1175/1520-0493(1988)116<1790:MSOOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., J. A. Sippel, and D. S. Nolan, 2012: The impact of dry midlevel air on hurricane intensity in idealized simulations with no mean flow. J. Atmos. Sci., 69, 236257, https://doi.org/10.1175/JAS-D-10-05007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. K. Smolarkiewicz, 1989: Gravity waves, compensating subsidence and detrainment around cumulus clouds. J. Atmos. Sci., 46, 740759, https://doi.org/10.1175/1520-0469(1989)046<0740:GWCSAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. G., and C. Zhang, 1997: Variability of midtropospheric moisture and its effect on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54, 27602774, https://doi.org/10.1175/1520-0469(1997)054<2760:VOMMAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007a: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, https://doi.org/10.1175/JCLI4282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007b: Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. J. Climate, 20, 36543676, https://doi.org/10.1175/JCLI4203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casey, S. P., A. E. Dessler, and C. Schumacher, 2009: Five-year climatology of midtroposphere dry air layers in warm tropical ocean regions as viewed by AIRS/Aqua. J. Appl. Meteor. Climatol., 48, 18311842, https://doi.org/10.1175/2009JAMC2099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16 60116 615, https://doi.org/10.1029/JD095iD10p16601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1996: Cloud feedback in atmospheric general circulation models: An update. J. Geophys. Res., 101, 12 79112 794, https://doi.org/10.1029/96JD00822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaidez, V., D. Dreano, S. Agusti, C. M. Duarte, and I. Hoteit, 2017: Decadal trends in Red Sea maximum surface temperature. Sci. Rep., 7, 8144, https://doi.org/10.1038/s41598-017-08146-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., G. B. Bonan, and S. Levis, 2006: Soil moisture feedbacks to precipitation in southern Africa. J. Climate, 19, 41984206, https://doi.org/10.1175/JCLI3856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, L., C. Jakob, P. May, V. Kumar, and S. Xie, 2013: Relationships between the large-scale atmosphere and the small-scale convective state for Darwin, Australia. J. Geophys. Res. Atmos., 118, 11 53411 545, https://doi.org/10.1002/jgrd.50645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1974: Discussion of measurements inside high-speed thunderstorm updrafts. J. Appl. Meteor., 13, 710717, https://doi.org/10.1175/1520-0450(1974)013<0710:DOMIHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawe, J. T., and P. H. Austin, 2011: The influence of the cloud shell on tracer budget measurements of LES cloud entrainment. J. Atmos. Sci., 68, 29092920, https://doi.org/10.1175/2011JAS3658.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219233, https://doi.org/10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Vries, A. J., E. Tyrlis, D. Edry, S. O. Krichak, B. Steil, and J. Lelieveld, 2013: Extreme precipitation events in the Middle East: Dynamics of the active Red Sea trough. J. Geophys. Res. Atmos., 118, 70877108, https://doi.org/10.1002/jgrd.50569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Vries, A. J., H. G. Ouwersloot, S. B. Feldstein, M. Riemer, A. M. El Kenawy, M. F. McCabe, and J. Lelieveld, 2018: Identification of tropical–extratropical interactions and extreme precipitation events in the Middle East based on potential vorticity and moisture transport. J. Geophys. Res. Atmos., 123, 861881, https://doi.org/10.1002/2017JD027587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., R. A. Maddox, K. Howard, and S. Reyes, 1993: The Mexican monsoon. J. Climate, 6, 16651677, https://doi.org/10.1175/1520-0442(1993)006<1665:TMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, https://doi.org/10.1175/2010JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, https://doi.org/10.5194/ACP-9-5587-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A., 1998: A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour. Res., 34, 765776, https://doi.org/10.1029/97WR03499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University, 590 pp.

  • Emanuel, K. A., 1995: The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci., 52, 39603968, https://doi.org/10.1175/1520-0469(1995)052<3960:TBOASH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2019: Inferences from simple models of slow, convectively coupled processes. J. Atmos. Sci., 76, 195208, https://doi.org/10.1175/JAS-D-18-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and the global climate system. 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240–241.

  • Feng, Z., S. Hagos, A. K. Rowe, C. D. Burleyson, M. N. Martini, and S. P. de Szoeke, 2015: Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign. J. Adv. Model. Earth Syst., 7, 357381, https://doi.org/10.1002/2014MS000384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., and R. A. Houze, 1989: One-dimensional time-dependent modeling of gate cumulonimbus convection. J. Atmos. Sci., 46, 330352, https://doi.org/10.1175/1520-0469(1989)046<0330:ODTDMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., J. Simpson, M. A. LeMone, J. M. Straka, and B. F. Smull, 2009: On how hot towers fuel the Hadley cell: An observational and modeling study of line-organized convection in the equatorial trough from TOGA COARE. J. Atmos. Sci., 66, 27302746, https://doi.org/10.1175/2009JAS3017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., U. Beyerle, and R. Knutti, 2013: Robust spatially aggregated projections of climate extremes. Nat. Climate Change, 3, 10331038, https://doi.org/10.1038/nclimate2051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritz, C., and Z. Wang, 2013: A numerical study of the impacts of dry air on tropical cyclone formation: A development case and a nondevelopment case. J. Atmos. Sci., 70, 91111, https://doi.org/10.1175/JAS-D-12-018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gamble, D. W., and S. Curtis, 2008: Caribbean precipitation: Review, model and prospect. Prog. Phys. Geogr., 32, 265276, https://doi.org/10.1177/0309133308096027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1975: Tropical cyclone genesis. Dept. of Atmos. Sci. Paper 234, Colorado State University, 121 pp., https://mountainscholar.org/bitstream/handle/10217/247/0234_Bluebook.pdf;sequence=1.

  • Gray, W. M., 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 3769, https://doi.org/10.1007/BF01277501.

  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 51412 535, https://doi.org/10.1002/2015JD024257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., 2017: Entrainment versus dilution in tropical deep convection. J. Atmos. Sci., 74, 37253747, https://doi.org/10.1175/JAS-D-16-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., and E. D. Maloney, 2011: The role of moisture–convection feedbacks in simulating the Madden–Julian oscillation. J. Climate, 24, 27542770, https://doi.org/10.1175/2011JCLI3803.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schär, 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020, https://doi.org/10.1175/2009JCLI2604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, https://doi.org/10.1175/2008JAS2806.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houghton, H. G., and H. E. Cramer, 1951: A theory of entrainment in convective currents. J. Meteor., 8, 95102, https://doi.org/10.1175/1520-0469(1951)008<0095:ATOEIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, https://doi.org/10.1029/2011RG000365.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakob, C., and A. P. Siebesma, 2003: A new subcloud model for mass-flux convection schemes: Influence on triggering, updraft properties, and model climate. Mon. Wea. Rev., 131, 27652778, https://doi.org/10.1175/1520-0493(2003)131<2765:ANSMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and A. D. Del Genio, 2006: Factors limiting convective cloud-top height at the ARM Nauru Island climate research facility. J. Climate, 19, 21052117, https://doi.org/10.1175/JCLI3722.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. Zwiers, X. Zhang, and M. Wehner, 2013: Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345357, https://doi.org/10.1007/s10584-013-0705-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., A. H. Sobel, E. D. Maloney, D. M. W. Frierson, and I.-S. Kang, 2011: A systematic relationship between intraseasonal variability and mean state bias in AGCM simulations. J. Climate, 24, 55065520, https://doi.org/10.1175/2011JCLI4177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., 2006: A modeling study of hurricane landfall in a dry environment. Mon. Wea. Rev., 134, 19011918, https://doi.org/10.1175/MWR3155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., and R. A. Houze, 1999: Thermodynamic characteristics of air flowing into and out of precipitating convection over the west Pacific warm pool. Quart. J. Roy. Meteor. Soc., 125, 12091229, https://doi.org/10.1002/qj.1999.49712555606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, https://doi.org/10.1038/ngeo779.

  • Knutson, T. R., and Coauthors, 2020: Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming. Bull. Amer. Meteor. Soc., 101, E303E322, https://doi.org/10.1175/BAMS-D-18-0194.1.