• Adcroft, A., C. Hill, J.-M. Campin, J. Marshall, and P. Heimbach, 2004: Overview of the formulation and numerics of the MITGCM. Proc. ECMWF Seminar Series on Numerical Methods, Recent Developments in Numerical Methods for Atmosphere and Ocean Modelling, ECMWF, 139–149, http://mitgcm.org/pdfs/ECMWF2004-Adcroft.pdf.

  • Amante, C., and B. W. Eakins, 2009: ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-24, 19 pp., http://www.ngdc.noaa.gov/mgg/global/global.html.

  • Banks, H. T., and N. L. Bindoff, 2003: Comparison of observed temperature and salinity changes in the Indo-Pacific with results from the coupled climate model HadCM3: Processes and mechanisms. J. Climate, 16, 156166, https://doi.org/10.1175/1520-0442(2003)016<0156:COOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banks, H. T., R. A. Wood, J. M. Gregory, T. C. Johns, and G. S. Jones, 2000: Are observed decadal changes in intermediate water masses a signature of anthropogenic climate change? Geophys. Res. Lett., 27, 29612964, https://doi.org/10.1029/2000GL011601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., and A. L. Gordon, 1996: Southern Ocean fronts from the Greenwich meridian to Tasmania. J. Geophys. Res., 101, 36753696, https://doi.org/10.1029/95JC02750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and T. J. McDougall, 2000: Decadal changes along an Indian Ocean section at 32°S and their interpretation. J. Phys. Oceanogr., 30, 12071222, https://doi.org/10.1175/1520-0485(2000)030<1207:DCAAIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., and et al. , 2013: High-latitude ocean and sea ice surface fluxes: Challenges for climate research. Bull. Amer. Meteor. Soc., 94, 403423, https://doi.org/10.1175/BAMS-D-11-00244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and et al. , 2018: World Ocean Database 2018. NOAA Atlas NESDIS 87, 207 pp.

  • Bretherton, F. P., R. E. Davis, and C. B. Fandry, 1976: A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res., 23, 559582, https://doi.org/10.1016/0011-7471(76)90001-2.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., E. L. McDonagh, and B. A. King, 2003: Changes in ocean water mass properties: Oscillations or trends? Science, 300, 20862088, https://doi.org/10.1126/science.1083980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., L. D. Talley, and M. R. Mazloff, 2011: A comparison of Southern Ocean air–sea buoyancy flux from an ocean state estimate with five other products. J. Climate, 24, 62836306, https://doi.org/10.1175/2011JCLI3858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., L. D. Talley, M. R. Mazloff, and G. Maze, 2013: Subantarctic Mode Water formation, destruction, and export in the eddy-permitting Southern Ocean state estate. J. Phys. Oceanogr., 43, 14851511, https://doi.org/10.1175/JPO-D-12-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and F. J. Wentz, 2005: Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research. Bull. Amer. Meteor. Soc., 86, 10971116, https://doi.org/10.1175/BAMS-86-8-1097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chereskin, T. K., and D. Roemmich, 1991: A comparison of measured and wind-derived Ekman transport at 11°N in the Atlantic Ocean. J. Phys. Oceanogr., 21, 869878, https://doi.org/10.1175/1520-0485(1991)021<0869:ACOMAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., and D. W. J. Thompson, 2008: Observations of large-scale ocean–atmosphere interaction in the Southern Hemisphere. J. Climate, 21, 12441259, https://doi.org/10.1175/2007JCLI1809.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CMEMS, 2020: SL-TAC Quality Information Document (QUID). Copernicus Marine Service, 72 pp., http://marine.copernicus.eu/documents/QUID/CMEMS-SL-QUID-008-032-062.pdf.

  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 1996: Upper-ocean thermal variations in the North Pacific during 1970–1991. J. Climate, 9, 18401855, https://doi.org/10.1175/1520-0442(1996)009<1840:UOTVIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 2003: Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16, 5772, https://doi.org/10.1175/1520-0442(2003)016<0057:UTPOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domingues, C. M., M. E. Maltrud, S. E. Wijffels, J. A. Church, and M. Tomczak, 2007: Simulated Lagrangian pathways between the Leeuwin Current system and the upper-ocean circulation of the southeast Indian Ocean. Deep-Sea Res. II, 54, 797817, https://doi.org/10.1016/j.dsr2.2006.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, S., S. T. Gille, and J. Sprintall, 2007: An assessment of the Southern Ocean mixed layer heat budget. J. Climate, 20, 44254442, https://doi.org/10.1175/JCLI4259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, S., J. Sprintall, S. T. Gille, and L. Talley, 2008: Southern Ocean mixed-layer depth from Argo float profiles. J. Geophys. Res., 113, C06013, https://doi.org/10.1029/2006JC004051.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105, 19 47719 498, https://doi.org/10.1029/2000JC900063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 43424362, https://doi.org/10.1175/2010JCLI3377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and et al. , 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, https://doi.org/10.1175/JPO-D-12-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emery, W. J., and R. E. Thomson, 2004: Data Analysis Methods in Physical Oceanography. Elsevier, 638 pp.

  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fine, R. A., 1993: Circulation of Antarctic intermediate water in the South Indian Ocean. Deep-Sea Res., 40, 20212042, https://doi.org/10.1016/0967-0637(93)90043-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., and D. H. Bromwich, 2006: Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the southern annular mode. J. Climate, 19, 979997, https://doi.org/10.1175/JCLI3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and Global Ocean state estimation. Geosci. Model Dev., 8, 30713104, https://doi.org/10.5194/gmd-8-3071-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frenger, I., M. Münnich, N. Gruber, and R. Knutti, 2015: Southern Ocean eddy phenomenology. J. Geophys. Res. Oceans, 120, 74137449, https://doi.org/10.1002/2015JC011047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaillard, F., T. Reynaud, V. Thierry, N. Kolodziejczyk, and K. von Schuckmann, 2016: In situ-based reanalysis of the global ocean temperature and salinity with ISAS: Variability of the heat content and steric height. J. Climate, 29, 13051323, https://doi.org/10.1175/JCLI-D-15-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, L., S. R. Rintoul, and W. Yu, 2018: Recent wind-driven change in Subantarctic Mode Water and its impact on ocean heat storage. Nat. Climate Change, 8, 5863, https://doi.org/10.1038/s41558-017-0022-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, H. E., T. P. Boyer, R. A. Locarnini, O. K. Baranova, and M. M. Zweng, 2018: World Ocean Database 2018: User’s manual (prerelease). NOAA, 109 pp., https://rda.ucar.edu/datasets/ds285.0/docs/WOD18-UsersManual_final.pdf.

  • Gaspar, P., Y. Grégoris, and J.-M. Lefevre, 1990: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at Station Papa and long-term upper ocean study site. J. Geophys. Res., 95, 16 17916 193, https://doi.org/10.1029/JC095iC09p16179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D., and S. Wang, 1999: Definition of Antarctic Oscillation index. Geophys. Res. Lett., 26, 459462, https://doi.org/10.1029/1999GL900003.

  • Häkkinen, S., P. B. Rhines, and D. L. Worthen, 2016: Warming of the global ocean: Spatial structure and water-mass trends. J. Climate, 29, 49494963, https://doi.org/10.1175/JCLI-D-15-0607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, A., and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate, 15, 30433057, https://doi.org/10.1175/1520-0442(2002)015<3043:SVITSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and L. Talley, 2001: Mode waters. Ocean Circulation and Climate, G. Siedler and J. Church, Eds., International Geophysics Series, Academic Press, 373–386.

    • Crossref
    • Export Citation
  • Herraiz-Borreguero, L., and S. R. Rintoul, 2010: Subantarctic Mode Water variability influenced by mesoscale eddies south of Tasmania. J. Geophys. Res., 115, C04004, https://doi.org/10.1029/2008JC005146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herraiz-Borreguero, L., and S. R. Rintoul, 2011: Subantarctic Mode Water: Distribution and circulation. Ocean Dyn., 61, 103126, https://doi.org/10.1007/s10236-010-0352-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., Y. Du, T. Qu, Y. Zhang, and W. Cai, 2020: Variability of the Subantarctic Mode Water volume in the South Indian Ocean during 2004–2018. Geophys. Res. Lett., 47, e2020GL087830, https://doi.org/10.1029/2020GL087830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosoda, S., T. Ohira, and T. Nakamura, 2008: A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep. Res. Dev., 8, 4759, https://doi.org/10.5918/jamstecr.8.47.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. X., L.-S. Yu, and S.-Q. Zhou, 2018: New definition of potential spicity by the least square method. J. Geophys. Res. Oceans, 123, 73517365, https://doi.org/10.1029/2018JC014306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., 2005: Nonlinear vorticity balance of the Antarctic Circumpolar Current. J. Geophys. Res., 110, C11008, https://doi.org/10.1029/2004JC002753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, T., M. Woloszyn, and M. Mazloff, 2010: Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow. Nature, 463, 8083, https://doi.org/10.1038/nature08687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1985: An oceanographic variable for the characterization of intrusions and water masses. Deep-Sea Res., 32, 11951207, https://doi.org/10.1016/0198-0149(85)90003-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, D. C., A. J. S. Meijers, E. Shuckburgh, J.-B. Sallée, P. Haynes, E. K. McAufield, and M. R. Mazloff, 2016: How does Subantarctic Mode Water ventilate the Southern Hemisphere subtropics? J. Geophys. Res. Oceans, 121, 65586582, https://doi.org/10.1002/2016JC011680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1989: Southern Hemisphere circulation features associated with El Niño–Southern Oscillation events. J. Climate, 2, 12391252, https://doi.org/10.1175/1520-0442(1989)002<1239:SHCFAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karsten, R. H., and J. Marshall, 2002: Constructing the residual circulation of the ACC from observations. J. Phys. Oceanogr., 32, 33153327, https://doi.org/10.1175/1520-0485(2002)032<3315:CTRCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karstensen, J., and D. Quadfasel, 2002: Water subducted into the Indian Ocean subtropical gyre. Deep-Sea Res. II, 49, 14411457, https://doi.org/10.1016/S0967-0645(01)00160-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsumata, K., and H. Yoshinari, 2010: Uncertainties in global mapping of Argo drift data at the parking level. J. Oceanogr., 66, 553569, https://doi.org/10.1007/s10872-010-0046-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsura, S., E. Oka, B. Qiu, and N. Schneider, 2013: Formation and subduction of North Pacific tropical water and their interannual variability. J. Phys. Oceanogr., 43, 24002415, https://doi.org/10.1175/JPO-D-13-031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., 1992: An equivalent-barotropic mode in the fine resolution Antarctic model. J. Phys. Oceanogr., 22, 13791387, https://doi.org/10.1175/1520-0485(1992)022<1379:AEBMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-B., I. Fukumori, and T. Lee, 2006: The closure of the ocean mixed layer temperature budget using level-coordinate model fields. J. Atmos. Oceanic Technol., 23, 840853, https://doi.org/10.1175/JTECH1883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolodziejczyk, N., and F. Gaillard, 2012: Observation of spiciness interannual variability in the Pacific pycnocline. J. Geophys. Res., 117, C12018, https://doi.org/10.1029/2012JC008365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolodziejczyk, N., and F. Gaillard, 2013: Variability of the heat and salt budget in the subtropical southeastern Pacific mixed layer between 2004 and 2010: Spice injection mechanism. J. Phys. Oceanogr., 43, 18801898, https://doi.org/10.1175/JPO-D-13-04.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolodziejczyk, N., G. Reverdin, and A. Lazar, 2015: Interannual variability of the mixed layer winter convection and spice injection in the eastern subtropical North Atlantic. J. Phys. Oceanogr., 45, 504525, https://doi.org/10.1175/JPO-D-14-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolodziejczyk, N., P.-M. Annaig, and G. Fabienne, 2017: ISAS-15 temperature and salinity gridded fields. SEANOE, https://doi.org/10.17882/52367.

    • Crossref
    • Export Citation
  • Kolodziejczyk, N., W. Llovel, and E. Portela, 2019: Interannual variability of upper ocean water masses as inferred from Argo array. J. Geophys. Res. Oceans, 124, 60676085, https://doi.org/10.1029/2018JC014866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kouketsu, S., S. Osafune, Y. Kumamoto, and H. Uchida, 2017: Eastward salinity anomaly propagation in the intermediate layer of the North Pacific. J. Geophys. Res. Oceans, 122, 15901607, https://doi.org/10.1002/2016JC012118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. and S. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. Note NCAR/TN-460+STR, 112 pp., https://doi.org/10.5065/D6KK98Q6.

    • Crossref
    • Export Citation
  • Laurian, A., A. Lazar, and G. Reverdin, 2009: Generation mechanism of spiciness anomalies: An OGCM analysis in the North Atlantic subtropical gyre. J. Phys. Oceanogr., 39, 10031018, https://doi.org/10.1175/2008JPO3896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebedev, K. V., H. Yoshinari, N. A. Maximenko, and P. W. Hacker, 2007: YoMaHa’07: Velocity data assessed from trajectories of Argo floats at parking level and at the sea surface. IPRC Tech. Note 4, 20 pp., http://apdrc.soest.hawaii.edu/projects/yomaha/yomaha07/YoMaHa070612.pdf.

  • Li, Y., and F. Wang, 2015: Thermocline spiciness variations in the tropical Indian Ocean observed during 2003–2014. Deep-Sea Res., 97, 5266, https://doi.org/10.1016/j.dsr.2014.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., F. Wang, and Y. Sun, 2012: Low-frequency spiciness variations in the tropical Pacific Ocean observed during 2003–2012. Geophys. Res. Lett., 39, L23601, https://doi.org/10.1029/2012GL053971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. Hartmann, 1999: Eddies and the annular modes of climate variability. Geophys. Res. Lett., 26, 31333136, https://doi.org/10.1029/1999GL010478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and et al. , 2013: World Ocean Atlas 2013. NOAA Atlas NESDIS 73, 40 pp.

  • Lovenduski, N. S., and N. Gruber, 2005: Impact of the southern annular mode on Southern Ocean circulation and biology. Geophys. Res. Lett., 32, L11603, https://doi.org/10.1029/2005GL022727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., M. S. McCartney, and W. B. Owens, 1994: Anomalous anomalies in averaged hydrographic data. J. Phys. Oceanogr., 24, 26242638, https://doi.org/10.1175/1520-0485(1994)024<2624:AAIAHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, https://doi.org/10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, M. C., and L. D. Talley, 1999: Three-dimensional isoneutral potential vorticity structure in the Indian Ocean. J. Geophys. Res., 104, 13 25113 267, https://doi.org/10.1029/1999JC900028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCartney, M. S., 1977: Subantarctic mode water. A Voyage of Discovery: George Deacon 70th Anniversary Volume, M. V. Angel, Ed., Pergamon, 103–119.

  • McCartney, M. S., 1982: The subtropical recirculation of mode waters. J. Mar. Res., 40, 427464.

  • McDougall, T. J., and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox. SCOR/IAPSO WG127, 28 pp.

  • McDougall, T. J., and O. A. Krzysik, 2015: Spiciness. J. Mar. Res., 73, 141152, https://doi.org/10.1357/002224015816665589.

  • Meijers, A. J. S., I. Cerovečki, B. A. King, and V. Tamsitt, 2019: A see-saw in Pacific Subantarctic Mode Water formation driven by atmospheric modes. Geophys. Res. Lett., 46, 13 15213 160, https://doi.org/10.1029/2019GL085280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrow, R., A. Brut, and A. Chaigneau, 2003: Seasonal and interannual variations of the upper ocean energetics between Tasmania and Antarctica. Deep-Sea Res., 50, 339356, https://doi.org/10.1016/S0967-0637(03)00015-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography, MIT Press, 264–291.

  • Nagata, Y., Y. Michida, and Y. Umimura, 1988: Variation of position and structures of the oceanic fronts in the Indian Ocean sector of the Southern Ocean in the period from 1965 to 1987. Antarctic Ocean and Resources Variability, D. Sahrhage, Ed., Springer, 92–98.

    • Crossref
    • Export Citation
  • Nagura, M., 2018: Annual Rossby waves below the pycnocline in the Indian Ocean. J. Geophys. Res. Oceans, 123, 94059415, https://doi.org/10.1029/2018JC014362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagura, M., 2020: Variability in meridional transport of the subtropical circulation in the south Indian Ocean for the period from 2006 to 2017. J. Geophys. Res. Oceans, 124, e2019JC015874, https://doi.org/10.1029/2019JC015874.

    • Search Google Scholar
    • Export Citation
  • Nagura, M., and S. Kouketsu, 2018: Spiciness anomalies in the upper south Indian Ocean. J. Climate, 48, 20812101, https://doi.org/10.1175/JPO-D-18-0050.1.

    • Search Google Scholar
    • Export Citation
  • Nagura, M., and M. J. McPhaden, 2018: The shallow overturning circulation in the Indian Ocean. J. Phys. Oceanogr., 48, 413434, https://doi.org/10.1175/JPO-D-17-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagura, M., T. Terao, and M. Hashizume, 2015: The role of temperature inversions in the generation of seasonal and interannual SST variability in the far northern Bay of Bengal. J. Climate, 28, 36713693, https://doi.org/10.1175/JCLI-D-14-00553.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., and H. J. Kim, 1999: Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J. Geophys. Res., 104, 15 62115 634, https://doi.org/10.1029/1999JC900068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nonaka, M., and H. Sasaki, 2007: Formation mechanism for isopycnal temperature–salinity anomalies propagating from the eastern South Pacific to the equatorial region. J. Climate, 20, 13051315, https://doi.org/10.1175/JCLI4065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nowlin, W. D., Jr., and J. M. Klinck, 1986: The physics of the Antarctic Circumpolar Current. Rev. Geophys., 24, 469491, https://doi.org/10.1029/RG024i003p00469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., T. Whitworth III, and W. D. Nowlin, 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res., 42, 641673, https://doi.org/10.1016/0967-0637(95)00021-W.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 1999: The MOM3 manual. GFDL Ocean Group Tech. Rep. 4, https://mdl-mom5.herokuapp.com/web/docs/project/MOM3_manual.pdf.

  • Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7, 952956, https://doi.org/10.1175/1520-0485(1977)007<0952:IMITUO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, H. E., and S. R. Rintoul, 2000: Eddy variability and energetics from direct current measurements in the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 30, 30503076, https://doi.org/10.1175/1520-0485(2000)030<3050:EVAEFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Portela, E., N. Kolodziejczyk, C. Maes, and V. Thierry, 2020: Interior water-mass variability in the Southern Hemisphere oceans during the last decade. J. Phys. Oceanogr., 50, 361381, https://doi.org/10.1175/JPO-D-19-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., L. Zhang, and N. Schneider, 2016: North Atlantic subtropical underwater and its year-to-year variability in annual subduction rate during the Argo period. J. Phys. Oceanogr., 46, 19011916, https://doi.org/10.1175/JPO-D-15-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., G. W. K. Moore, P. S. Guest, and K. Bumke, 2002: A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF and NCEP reanalyses. J. Phys. Oceanogr., 32, 383400, https://doi.org/10.1175/1520-0485(2002)032<0383:ACOSLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., and M. H. England, 2002: Ekman transport dominates local air–sea fluxes in driving variability of Subantarctic Mode Water. J. Phys. Oceanogr., 32, 13081321, https://doi.org/10.1175/1520-0485(2002)032<1308:ETDLAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rio, M.-H., and F. Hernandez, 2004: A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J. Geophys. Res., 109, C12032, https://doi.org/10.1029/2003JC002226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rochford, D., 1964: Hydrology of the Indian Ocean. III. Water masses of the upper 500 metres of the South-east Indian Ocean. Aust. J. Mar. Freshwater Res., 15, 2555, https://doi.org/10.1071/MF9640025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr., 82, 81100, https://doi.org/10.1016/j.pocean.2009.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton, and S. Wijffels, 2015: Unabated planetary warming and its ocean structure since 2006. Nat. Climate Change, 5, 240245, https://doi.org/10.1038/nclimate2513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruddick, B., 1983: A practical indicator of the stability of the water column to double-diffusive activity. Deep-Sea Res., 30, 11051107, https://doi.org/10.1016/0198-0149(83)90063-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabine, C. L., and et al. , 2004: The oceanic sink for anthropogenic CO2. Science, 305, 367371, https://doi.org/10.1126/science.1097403.

  • Sallée, J.-B., N. Wienders, K. Speer, and R. Morrow, 2006: Formation of Subantarctic Mode Water in the southeastern Indian Ocean. Ocean Dyn., 56, 525542, https://doi.org/10.1007/s10236-005-0054-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., R. Morrow, and K. Speer, 2008a: Eddy heat diffusion and Subantarctic Mode Water formation. Geophys. Res. Lett., 35, L05607, https://doi.org/10.1029/2007GL032827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., K. Speer, and R. Morrow, 2008b: Response of the Antarctic Circumpolar Current to atmospheric variability. J. Climate, 21, 30203039, https://doi.org/10.1175/2007JCLI1702.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., K. Speer, and S. Rintoul, 2010a: Zonally asymmetric response of the Southern Ocean mixed-layer depth to the southern annular mode. Nat. Geosci., 3, 273279, https://doi.org/10.1038/ngeo812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., K. Speer, S. Rintoul, and S. Wijffels, 2010b: Southern Ocean thermocline ventilation. J. Phys. Oceanogr., 40, 509529, https://doi.org/10.1175/2009JPO4291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, H., and et al. , 2020: A global eddying hindcast ocean simulation with OFES2. Geosci. Model Dev., 13, 33193336, https://doi.org/10.5194/gmd-13-3319-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, N., 2000: A decadal spiciness mode in the tropics. Geophys. Res. Lett., 27, 257260, https://doi.org/10.1029/1999GL002348.

  • Schneider, N., A. J. Miller, M. A. Alexander, and C. Deser, 1999: Subduction of decadal North Pacific temperature anomalies: Observations and dynamics. J. Phys. Oceanogr., 29, 10561070, https://doi.org/10.1175/1520-0485(1999)029<1056:SODNPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schodlok, M. P., and M. Tomczak, 1997: Deep sections through the South Australian basin and across the Australian-Antarctic Discordance. Geophys. Res. Lett., 24, 27852788, https://doi.org/10.1029/97GL01929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulz, E. W., S. A. Josey, and R. Verein, 2012: First air–sea flux mooring measurements in the Southern Ocean. Geophys. Res. Lett., 39, L16606, https://doi.org/10.1029/2012GL052290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2001: Circulation, renewal, and modification of Antarctic Mode and Intermediate Water. J. Phys. Oceanogr., 31, 10051030, https://doi.org/10.1175/1520-0485(2001)031<1005:CRAMOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1962: On the cause of the temperature–salinity curve in the ocean. Natl. Acad. Sci., 48, 764766, https://doi.org/10.1073/pnas.48.5.764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1979: Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc. Natl. Acad. Sci. USA, 76, 30513055, https://doi.org/10.1073/pnas.76.7.3051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stramma, L., 1992: The South Indian Ocean Current. J. Phys. Oceanogr., 22, 421430, https://doi.org/10.1175/1520-0485(1992)022<0421:TSIOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2003: Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr., 33, 530560, https://doi.org/10.1175/1520-0485(2003)033<0530:SIADOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., and M. O. Baringer, 1997: Preliminary results from WOCE hydrographic sections at 80°E and 32°S in the central Indian Ocean. Geophys. Res. Lett., 24, 27892792, https://doi.org/10.1029/97GL02657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamsitt, V., L. D. Talley, M. R. Mazloff, and I. Cerovečki, 2016: Zonal variations in the Southern Ocean heat budget. J. Climate, 29, 65636579, https://doi.org/10.1175/JCLI-D-15-0630.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamsitt, V., I. Cerovečki, S. A. Josey, S. T. Gille, and E. Schulz, 2020: Mooring observations of air–sea heat fluxes in two Subantarctic Mode Water formation regions. J. Climate, 33, 27572777, https://doi.org/10.1175/JCLI-D-19-0653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J. M., and B. A. Warren, 1993: A hydrographic section across the subtropical south Indian Ocean. Deep-Sea Res. I, 40, 19732019, https://doi.org/10.1016/0967-0637(93)90042-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toyoda, T., and et al. , 2017: Intercomparison and validation of the mixed layer depth fields of global ocean syntheses. Climate Dyn., 49, 753773, https://doi.org/10.1007/s00382-015-2637-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsujino, H., and et al. , 2018: JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Modell., 130, 79139, https://doi.org/10.1016/j.ocemod.2018.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verdy, A., J. Marshall, and A. Czaja, 2006: Sea surface temperature variability along the path of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 36, 13171331, https://doi.org/10.1175/JPO2913.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veronis, G., 1972: On properties of seawater defined by temperature, salinity and pressure. J. Mar. Res., 30, 227255.

  • Vivier, F., D. Iudicone, F. Busdraghi, and Y.-H. Park, 2010: Dynamics of sea-surface temperature anomalies in the Southern Ocean diagnosed from a 2D mixed-layer model. Climate Dyn., 34, 153184, https://doi.org/10.1007/s00382-009-0724-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Y. Luo, 2020: Variability of spice injection in the upper ocean of the southeastern Pacific during 1992–2016. Climate Dyn., 54, 31853200, https://doi.org/10.1007/s00382-020-05164-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wells, N., and B. De Cuevas, 1995: Depth-integrated vorticity budget of the Southern Ocean from a general circulation model. J. Phys. Oceanogr., 25, 25692582, https://doi.org/10.1175/1520-0485(1995)025<2569:DIVBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijffels, S., J. Sprintall, M. Fieux, and N. Bray, 2002: The JADE and WOCE I10/IR6 Throughflow sections in the southeast Indian Ocean. Part I: Water mass distribution and variability. Deep-Sea Res. II, 49, 13411362, https://doi.org/10.1016/S0967-0645(01)00155-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, A. P. S., N. L. Bindoff, and J. A. Church, 1999: Large-scale freshening of intermediate waters in the Pacific and Indian Oceans. Nature, 400, 440443, https://doi.org/10.1038/22733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, A. P. S., G. C. Johnson, and W. B. Owens, 2003: Delayed-mode calibration of autonomous CTD profiling float salinity data by θ-S climatology. J. Atmos. Oceanic Technol., 20, 308318, https://doi.org/10.1175/1520-0426(2003)020<0308:DMCOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, A. P. S., R. Keeley, T. Carval, and the Argo Data Management Team, 2020: Argo Quality Control Manual for CTD and Trajectory Data, https://doi.org/10.13155/33951..

    • Crossref
    • Export Citation
  • Yeager, S. G., and W. G. Large, 2004: Late-winter generation of spiciness on subducted isopycnals. J. Phys. Oceanogr., 34, 15281547, https://doi.org/10.1175/1520-0485(2004)034<1528:LGOSOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., and W. G. Large, 2007: Observational evidence of winter spice injection. J. Phys. Oceanogr., 37, 28952919, https://doi.org/10.1175/2007JPO3629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527540, https://doi.org/10.1175/BAMS-88-4-527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zweng, M. M., and et al. , 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 39 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol2.pdf.

All Time Past Year Past 30 Days
Abstract Views 107 107 92
Full Text Views 26 26 25
PDF Downloads 27 27 27

Spiciness Anomalies of Subantarctic Mode Water in the South Indian Ocean

View More View Less
  • 1 Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
© Get Permissions
Restricted access

Abstract

This study investigates spreading and generation of spiciness anomalies of the Subantarctic Mode Water (SAMW) located on 26.6 to 26.8 σθ in the south Indian Ocean, using in situ hydrographic observations, satellite measurements, reanalysis datasets, and numerical model output. The amplitude of spiciness anomalies is about 0.03 psu or 0.13°C and tends to be large along the streamline of the subtropical gyre, whose upstream end is the outcrop region south of Australia. The speed of spreading is comparable to that of the mean current, and it takes about a decade for a spiciness anomaly in the outcrop region to spread into the interior up to Madagascar. In the outcrop region, interannual variability in mixed layer temperature and salinity tends to be density compensating, which indicates that Eulerian temperature or salinity changes account for the generation of isopycnal spiciness anomalies. It is known that wintertime temperature and salinity in the surface mixed layer determine the temperature and salinity relationship of a subducted water mass. Considering this, the mixed layer heat budget in the outcrop region is estimated based on the concept of effective mixed layer depth, the result of which shows the primary contribution from horizontal advection. The contributions from Ekman and geostrophic currents are comparable. Ekman flow advection is caused by zonal wind stress anomalies and the resulting meridional Ekman current anomalies, as is pointed out by a previous study. Geostrophic velocity is decomposed into large-scale and mesoscale variability, both of which significantly contribute to horizontal advection.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Motoki Nagura, nagura@jamstec.go.jp

Abstract

This study investigates spreading and generation of spiciness anomalies of the Subantarctic Mode Water (SAMW) located on 26.6 to 26.8 σθ in the south Indian Ocean, using in situ hydrographic observations, satellite measurements, reanalysis datasets, and numerical model output. The amplitude of spiciness anomalies is about 0.03 psu or 0.13°C and tends to be large along the streamline of the subtropical gyre, whose upstream end is the outcrop region south of Australia. The speed of spreading is comparable to that of the mean current, and it takes about a decade for a spiciness anomaly in the outcrop region to spread into the interior up to Madagascar. In the outcrop region, interannual variability in mixed layer temperature and salinity tends to be density compensating, which indicates that Eulerian temperature or salinity changes account for the generation of isopycnal spiciness anomalies. It is known that wintertime temperature and salinity in the surface mixed layer determine the temperature and salinity relationship of a subducted water mass. Considering this, the mixed layer heat budget in the outcrop region is estimated based on the concept of effective mixed layer depth, the result of which shows the primary contribution from horizontal advection. The contributions from Ekman and geostrophic currents are comparable. Ekman flow advection is caused by zonal wind stress anomalies and the resulting meridional Ekman current anomalies, as is pointed out by a previous study. Geostrophic velocity is decomposed into large-scale and mesoscale variability, both of which significantly contribute to horizontal advection.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Motoki Nagura, nagura@jamstec.go.jp
Save