• Ambaum, M. H. P., B. J. Hoskins, and D. B. Stephenson, 2001: Arctic Oscillation or North Atlantic Oscillation? J. Climate, 14, 34953507, https://doi.org/10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., C. B. Leovy, and J. R. Holton, 1987: Middle Atmosphere Dynamics. Academic Press, 485 pp.

  • Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 93730 946, https://doi.org/10.1029/1999JD900445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castanheira, J. M., and H. F. Graf, 2003: North Pacific–North Atlantic relationships under stratospheric control? J. Geophys. Res., 108, 4036, https://doi.org/10.1029/2002JD002754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, https://doi.org/10.1175/JCLI3996.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2011: Corrigendum. J. Climate, 24, 5951, https://doi.org/10.1175/JCLI-D-11-00348.1.

  • Chen, S., and L. Song, 2019: Recent strengthened impact of the winter Arctic Oscillation on the Southeast Asian surface air temperature variation. Atmosphere, 10, 164, https://doi.org/10.3390/atmos10040164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., R. Wu, and W. Chen, 2018: A strengthened impact of November Arctic Oscillation on subsequent tropical Pacific sea surface temperature variation since the late-1970s. Climate Dyn., 51, 511529, https://doi.org/10.1007/s00382-017-3937-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., and Q. Zhou, 2012: Modulation of the Arctic Oscillation and the East Asian winter climate relationships by the 11-year solar cycle. Adv. Atmos. Sci., 29, 217226, https://doi.org/10.1007/s00376-011-1095-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., M. Takahashi, and H. F. Graf, 2003: Interannual variations of stationary planetary wave activity in the northern winter troposphere and stratosphere and their relations to NAM and SST. J. Geophys. Res., 108, 4797, https://doi.org/10.1029/2003JD003834.

    • Search Google Scholar
    • Export Citation
  • Cheng, Q., and B. Tan, 2019: On the variation of the Pacific center: A revisit to the physical nature of Arctic oscillation. Climate Dyn., 53, 12331243, https://doi.org/10.1007/s00382-018-4583-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheung, H. H. N., W. Zhou, M. Y. T. Leung, C. M. Shun, S. M. Lee, and H. W. Tong, 2016: A strong phase reversal of the Arctic Oscillation in midwinter 2015/2016: Role of the stratospheric polar vortex and tropospheric blocking. J. Geophys. Res. Atmos., 121, 13 44313 457, https://doi.org/10.1002/2016JD025288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, P., and B. Tan, 2017: The nature of the Arctic Oscillation and diversity of the extreme surface weather anomalies it generates. J. Climate, 30, 55635584, https://doi.org/10.1175/JCLI-D-16-0467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., C. Cagnazzo, R. Neale, and J. Tribbia, 2012: Coupling between Greenland blocking and the North Atlantic Oscillation pattern. Geophys. Res. Lett., 39, L14701, https://doi.org/10.1029/2012GL052315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., C. Cagnazzo, and J. A. Anstey, 2014: A blocking view of the stratosphere–troposphere coupling. J. Geophys. Res. Atmos., 119, 11 10011 115, https://doi.org/10.1002/2014JD021703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., 2000: On the teleconnectivity of the “Arctic oscillation”. Geophys. Res. Lett., 27, 779782, https://doi.org/10.1029/1999GL010945.

  • Dong, B., R. T. Sutton, and T. Woollings, 2011: Changes of interannual NAO variability in response to greenhouse gases forcing. Climate Dyn., 37, 16211641, https://doi.org/10.1007/s00382-010-0936-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, H., L. Wang, W. Chen, and D. Nath, 2018: Multidecadal fluctuation of the wintertime Arctic Oscillation pattern and its implication. J. Climate, 31, 55955608, https://doi.org/10.1175/JCLI-D-17-0530.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, H., L. Wang, W. Chen, R. Wu, W. Zhou, L. Liu, D. Nath, and X. Lan, 2019: Diversity of the wintertime Arctic Oscillation pattern among CMIP5 models: Role of the stratospheric polar vortex. J. Climate, 32, 52355250, https://doi.org/10.1175/JCLI-D-18-0603.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hilmer, M., and T. Jung, 2000: Evidence for a recent change in the link between the North Atlantic Oscillation and Arctic sea ice export. Geophys. Res. Lett., 27, 989992, https://doi.org/10.1029/1999GL010944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinssen, Y., A. Delden, T. Opsteegh, and W. Geus, 2010: Stratospheric impact on tropospheric winds deduced from potential vorticity inversion in relation to the Arctic Oscillation. Quart. J. Roy. Meteor. Soc., 136, 2029, https://doi.org/10.1002/qj.542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., and I. R. Simpson, 2014: The downward influence of stratospheric sudden warmings. J. Atmos. Sci., 71, 38563876, https://doi.org/10.1175/JAS-D-14-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, D., and Z. Guan, 2018: Decadal relationship between the stratospheric Arctic vortex and Pacific decadal oscillation. J. Climate, 31, 33713386, https://doi.org/10.1175/JCLI-D-17-0266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, D., Z. Guan, W. Tian, and R. Ren, 2018: Recent strengthening of the stratospheric Arctic vortex response to warming in the central North Pacific. Nat. Commun., 9, 1697, https://doi.org/10.1038/s41467-018-04138-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, D., Y. Guo, Z. Tan, and Z. Guan, 2019a: Interannual relationship between the boreal spring Arctic oscillation and the Northern Hemisphere Hadley circulation extent. J. Climate, 32, 43954408, https://doi.org/10.1175/JCLI-D-18-0657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, D., Z. Guan, Y. Guo, C. Lu, and D. Jin, 2019b: Dynamical connection between the stratospheric Arctic vortex and sea surface temperatures in the North Atlantic. Climate Dyn., 53, 69796993, https://doi.org/10.1007/s00382-019-04971-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, D., Y. Guo, and Z. Guan, 2019c: Recent weakening in the stratospheric planetary wave intensity in early winter. Geophys. Res. Lett., 46, 39533962, https://doi.org/10.1029/2019GL082113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., and W. Tian, 2019: Eurasian cold air outbreaks under different Arctic stratospheric polar vortex strengths. J. Atmos. Sci., 76, 12451264, https://doi.org/10.1175/JAS-D-18-0285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., W. Tian, J. Zhang, Q. Huang, H. Tian, and J. Luo, 2017: The connection between extreme stratospheric polar vortex events and tropospheric blockings. Quart. J. Roy. Meteor. Soc., 143, 11481164, https://doi.org/10.1002/qj.3001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., W. Tian, L. J. Gray, J. Zhang, Y. Li, J. Luo, and H. Tian, 2018: Preconditioning of Arctic stratospheric polar vortex shift events. J. Climate, 31, 54175436, https://doi.org/10.1175/JCLI-D-17-0695.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, https://doi.org/10.1126/science.269.5224.676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. Zhang, T. Shim, and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, https://doi.org/10.1038/ncomms5646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodera, K., 2003: Solar influence on the spatial structure of the NAO during the winter 1900–1999. Geophys. Res. Lett., 30, 1175, https://doi.org/10.1029/2002GL016584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodera, K., and Y. Kuroda, 2000: Tropospheric and stratospheric aspects of the Arctic oscillation. Geophys. Res. Lett., 27, 33493352, https://doi.org/10.1029/2000GL012017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., T. Breiteig, and A. A. Scaife, 2010: The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Quart. J. Roy. Meteor. Soc., 136, 886893, https://doi.org/10.1002/qj.620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kornich, H., G. Schmitz, and E. Becker, 2006: The role of stationary waves in the maintenance of the northern annular mode as deduced from model experiments. J. Atmos. Sci., 63, 29312947, https://doi.org/10.1175/JAS3799.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuroda, YC., 2008: Effect of stratospheric sudden warming and vortex intensification on the tropospheric climate. J. Geophys. Res., 113, D15110, https://doi.org/10.1029/2007JD009550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., Q. Zhang, L. Ji, and J. Peng, 2012: Interannual variations of the blocking high over the Ural Mountains and its association with the AO/NAO in boreal winter. Acta Meteor. Sin., 26, 163175, https://doi.org/10.1007/s13351-012-0203-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 1999: Eddies and the annular modes of climate variability. Geophys. Res. Lett., 26, 31333136, https://doi.org/10.1029/1999GL010478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 2000: Wave-maintained annular modes of climate variability. J. Climate, 13, 44144429, https://doi.org/10.1175/1520-0442(2000)013<4414:WMAMOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., D. L. Hartmann, D. W. J. Thompson, and K. Jeev, 2005: Stratosphere–troposphere evolution during polar vortex intensification. J. Geophys. Res., 110, D24101, https://doi.org/10.1029/2005JD006302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., S. He, F. Li, H. Wang, and Y. Zhu, 2019: Unstable relationship between the Arctic Oscillation and East Asian jet stream in winter and possible mechanisms. Theor. Appl. Climatol., 135, 1327, https://doi.org/10.1007/s00704-017-2354-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2003: Eddy–zonal flow feedback in the Northern Hemisphere winter. J. Climate, 16, 12121227, https://doi.org/10.1175/1520-0442(2003)16<1212:EFFITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., Z. Zhu, R. Ren, L. Zhong, and C. Wang, 2010: Spatial pattern and zonal shift of the North Atlantic Oscillation. Part I: A dynamical interpretation. J. Atmos. Sci., 67, 28052826, https://doi.org/10.1175/2010JAS3345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J. L., W. S. Tian, P. Zhang, J. Hu, and F. Xie, 2012: Analysis of the anomalous signals around the tropopause and in the stratosphere before the meiyu onset (in Chinese). Acta Meteor. Sin., 70, 655669.

    • Search Google Scholar
    • Export Citation
  • Martineau, P., and S. W. Son, 2015: Onset of circulation anomalies during stratospheric vortex weakening events: The role of planetary-scale waves. J. Climate, 28, 73477370, https://doi.org/10.1175/JCLI-D-14-00478.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maycock, A. C., and P. Hitchcock, 2015: Do split and displacement sudden stratospheric warmings have different annular mode signatures? Geophys. Res. Lett., 42, 10 94310 951, https://doi.org/10.1002/2015GL066754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., L. J. Gray, J. Anstey, M. P. Baldwin, and A. J. C. Perez, 2013: The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26, 26682682, https://doi.org/10.1175/JCLI-D-12-00030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mukougawa, H., and T. Hirooka, 2004: Predictability of stratospheric sudden warming: A case study for 1998/99 winter. Mon. Wea. Rev., 132, 17641776, https://doi.org/10.1175/1520-0493(2004)132<1764:POSSWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, E. R., P. A. Newman, J. E. Rosenfield, and M. R. Schoeberl, 1996: An objective determination of the polar vortex using Ertel’s potential vorticity. J. Geophys. Res., 101, 94719478, https://doi.org/10.1029/96JD00066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Callaghan, A., M. Joshi, D. Stevens, and D. Mitchell, 2014: The effects of different sudden stratospheric warming types on the ocean. Geophys. Res. Lett., 41, 77397745, https://doi.org/10.1002/2014GL062179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, T. W., C. H. Ho, and S. Yang, 2011: Relationship between the Arctic Oscillation and cold surges over East Asia. J. Climate, 24, 6883, https://doi.org/10.1175/2010JCLI3529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, T. W., C. H. Ho, and Y. Deng, 2014: A synoptic and dynamical characterization of wave-train and blocking cold surge over East Asia. Climate Dyn., 43, 753770, https://doi.org/10.1007/s00382-013-1817-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quadrelli, R., and J. M. Wallace, 2002: Dependence of the structure of the Northern Hemisphere annular mode on the polarity of ENSO. Geophys. Res. Lett., 29, 2132, https://doi.org/10.1029/2002GL015807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, J., C. I. Garfinkel, and I. P. White, 2020: Predicting the downward and surface influence of the February 2018 and January 2019 sudden stratospheric warming events in Subseasonal to Seasonal (S2S) models. J. Geophys. Res. Atmos., 125, e2019JD031919, https://doi.org/10.1029/2019JD031919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seviour, W. J. M., D. M. Mitchell, and L. J. Gray, 2013: A practical method to identify displaced and split stratospheric polar vortex events. Geophys. Res. Lett., 40, 52685273, https://doi.org/10.1002/grl.50927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seviour, W. J. M., L. J. Gray, and D. M. Mitchell, 2016: Stratospheric polar vortex splits and displacements in the high-top CMIP5 climate models. J. Geophys. Res. Atmos., 121, 14001413, https://doi.org/10.1002/2015JD024178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, N., and C. Bueh, 2011: Two types of Arctic Oscillation and their associated dynamic features. Atmos. Ocean. Sci. Lett., 4, 287292, https://doi.org/10.1080/16742834.2011.11446944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, N., and C. Bueh, 2013: Three-dimensional dynamic features of two Arctic Oscillation types. Adv. Atmos. Sci., 30, 10391052, https://doi.org/10.1007/s00376-012-2077-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, N., and H. Nakamura, 2014: Multi-decadal modulations in the Aleutian–Icelandic low seesaw and the axial symmetry of the Arctic Oscillation signature, as revealed in the 20th century reanalysis. Tellus, 66, 22660, https://doi.org/10.3402/tellusa.v66.22660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and B. Tan, 2013: Mechanism of the wintertime Aleutian low–Icelandic low seesaw. Geophys. Res. Lett., 40, 41034108, https://doi.org/10.1002/grl.50770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, https://doi.org/10.1029/98GL00950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., M. P. Baldwin, and J. M. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15, 14211428, https://doi.org/10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 2000: North Atlantic oscillation/annular mode: Two paradigms—One phenomenon. Quart. J. Roy. Meteor. Soc., 126, 791805, https://doi.org/10.1002/qj.49712656402.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2010: Downward Arctic Oscillation signal associated with moderate weak stratospheric polar vortex and the cold December 2009. Geophys. Res. Lett., 37, L09707, https://doi.org/10.1029/2010GL042659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, T., W. Tian, J. Zhang, F. Xie, R. Zhang, J. Huang, and D. Hu, 2020: Connections between spring Arctic ozone and the summer circulation and sea surface temperatures over the western North Pacific. J. Climate, 33, 29072923, https://doi.org/10.1175/JCLI-D-19-0292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, I., C. I. Garfinkel, E. P. Gerber, M. Jucker, V. Aquila, and L. D. Oman, 2019: The downward influence of sudden stratospheric warmings: Association with tropospheric precursors. J. Climate, 32, 85108, https://doi.org/10.1175/JCLI-D-18-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, I., C. I. Garfinkel, E. P. Gerber, M. Jucker, P. Hitchcock, and J. Rao, 2020: The generic nature of the tropospheric response to sudden stratospheric warmings. J. Climate, 33, 55895610, https://doi.org/10.1175/JCLI-D-19-0697.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woo, S. H., B. M. Kim, J. H. Jeong, S. J. Kim, and G. H. Lim, 2012: Decadal changes in surface air temperature variability and cold surge characteristics over northeast Asia and their relation with the Arctic Oscillation for the past three decades (1979–2011). J. Geophys. Res., 117, D18117, https://doi.org/10.1029/2011JD016929.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., B. Hoskins, M. Blackburn, and P. Berrisford, 2008: A new Rossby wave–breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci., 65, 609626, https://doi.org/10.1175/2007JAS2347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, F., and et al. , 2016: A connection from Arctic stratospheric ozone to El Niño–Southern Oscillation. Environ. Res. Lett., 11, 124026, https://doi.org/10.1088/1748-9326/11/12/124026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, Y., and D. Luo, 2014: Relationship between zonal position of the North Atlantic Oscillation and Euro-Atlantic blocking events and its possible effect on the weather over Europe. Sci. China Earth Sci., 57, 26282636, https://doi.org/10.1007/s11430-014-4949-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, Y., and D. Luo, 2018: An asymmetric spatiotemporal connection between the Euro-Atlantic blocking within the NAO life cycle and European climates. Adv. Atmos. Sci., 35, 796812, https://doi.org/10.1007/s00376-017-7128-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., W. Tian, M. P. Chipperfield, F. Xie, and J. Huang, 2016: Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nat. Climate Change, 6, 10941099, https://doi.org/10.1038/nclimate3136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., W. Tian, J. Zhang, J. Huang, F. Xie, and M. Xu, 2019: The corresponding tropospheric environments during downward-extending and nondownward-extending events of stratospheric northern annular mode anomalies. J. Climate, 32, 18571873, https://doi.org/10.1175/JCLI-D-18-0574.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. Jin, C. Chen, D. Guan, and M. Li, 2011: Interannual and interdecadal variations in the North Atlantic Oscillation spatial shift. Chin. Sci. Bull., 56, 26212627, https://doi.org/10.1007/s11434-011-4607-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., and H. von Storch, 1995: Taking serial correlation into account in tests of the mean. J. Climate, 8, 336351, https://doi.org/10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 165 165 165
Full Text Views 49 49 49
PDF Downloads 61 61 61

The Impact of the Stratospheric Polar Vortex Shift on the Arctic Oscillation

View More View Less
  • 1 Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, China
© Get Permissions
Restricted access

Abstract

Using the ERA-Interim reanalysis dataset for the time period 1979–2016, we analyzed the influence of the stratospheric polar vortex shift on the Arctic Oscillation (AO) in winter (December–March). The results show that a shift in the stratospheric polar vortex toward the Eurasian continent is favorable for the occurrence of the negative phase of the AO. The duration of the AO events accompanied by the stratospheric polar vortex shift toward the Eurasian continent (AO-shift events) is longer than that of the remaining negative AO events (AO-noshift events), and the intensity of AO-shift events is greater than that of AO-noshift events from day 4 to day 15 of the life cycle of the events. The enhancement in the AO intensity during AO-shift events is likely due to downward extension of the stratospheric northern annular mode (NAM) signals and more poleward-propagating planetary waves in the troposphere and lower stratosphere and their convergence in the mid-high latitudes. Furthermore, the polar vortex shift can lead to changes in the intensity of the three action centers in the AO spatial pattern at 500 hPa. In general, during AO-shift events, the three action centers are stronger than those during AO-noshift events. There is an overall westward shift of the Arctic action center during AO-shift events, which may be closely related to the changes of Greenland blocking frequency.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0536.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Wenshou Tian, wstian@lzu.edu.cn

Abstract

Using the ERA-Interim reanalysis dataset for the time period 1979–2016, we analyzed the influence of the stratospheric polar vortex shift on the Arctic Oscillation (AO) in winter (December–March). The results show that a shift in the stratospheric polar vortex toward the Eurasian continent is favorable for the occurrence of the negative phase of the AO. The duration of the AO events accompanied by the stratospheric polar vortex shift toward the Eurasian continent (AO-shift events) is longer than that of the remaining negative AO events (AO-noshift events), and the intensity of AO-shift events is greater than that of AO-noshift events from day 4 to day 15 of the life cycle of the events. The enhancement in the AO intensity during AO-shift events is likely due to downward extension of the stratospheric northern annular mode (NAM) signals and more poleward-propagating planetary waves in the troposphere and lower stratosphere and their convergence in the mid-high latitudes. Furthermore, the polar vortex shift can lead to changes in the intensity of the three action centers in the AO spatial pattern at 500 hPa. In general, during AO-shift events, the three action centers are stronger than those during AO-noshift events. There is an overall westward shift of the Arctic action center during AO-shift events, which may be closely related to the changes of Greenland blocking frequency.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0536.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Wenshou Tian, wstian@lzu.edu.cn
Save