• Arbic, B. K., R. B. Scott, G. R. Flierl, A. J. Morten, J. G. Richman, and J. F. Shriver, 2012: Nonlinear cascades of surface oceanic geostrophic kinetic energy in the frequency domain. J. Phys. Oceanogr., 42, 15771600, https://doi.org/10.1175/JPO-D-11-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., M. Müller, J. G. Richman, J. F. Shriver, A. J. Morten, R. B. Scott, G. Sérazin, and T. Penduff, 2014: Geostrophic turbulence in the frequency–wavenumber domain: Eddy-driven low-frequency variability. J. Phys. Oceanogr., 44, 20502069, https://doi.org/10.1175/JPO-D-13-054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55, 477493, https://doi.org/10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., R. J. Small, F. O. Bryan, and R. A. Tomas, 2017: Scale dependence of midlatitude air–sea interaction. J. Climate, 30, 82078221, https://doi.org/10.1175/JCLI-D-17-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1964: Atlantic Air–Sea Interaction. Advances in Geophysics, Vol. 10, Elsevier, 82 pp., https://doi.org/10.1016/S0065-2687(08)60005-9.

    • Crossref
    • Export Citation
  • Buckley, M. W., R. M. Ponte, G. Forget, and P. Heimbach, 2014: Low-frequency SST and upper-ocean heat content variability in the North Atlantic. J. Climate, 27, 49965018, https://doi.org/10.1175/JCLI-D-13-00316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. W., R. M. Ponte, G. Forget, and P. Heimbach, 2015: Determining the origins of advective heat transport convergence variability in the North Atlantic. J. Climate, 28, 39433956, https://doi.org/10.1175/JCLI-D-14-00579.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, https://doi.org/10.1126/science.1091901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dask Development Team, 2016: Dask: Library for dynamic task scheduling. https://dask.org.

  • Deremble, B., G. Lapeyre, and M. Ghil, 2012: Atmospheric dynamics triggered by an oceanic SST front in a moist quasigeostrophic model. J. Atmos. Sci., 69, 16171632, https://doi.org/10.1175/JAS-D-11-0288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models, Part II: Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289305, https://doi.org/10.3402/tellusa.v29i4.11362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., M. Latif, N. Keenlyside, W. Park, and K. P. Koltermann, 2013: North Atlantic Ocean control on surface heat flux on multidecadal timescales. Nature, 499, 464467, https://doi.org/10.1038/nature12268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, C. R., and et al. , 2020: Array programming with NumPy. Nature, 585, 357362, https://doi.org/10.1038/s41586-020-2649-2.

  • Hasselmann, K., 1976: Stochastic climate models. Part I: Theory. Tellus, 28, 473485, https://doi.org/10.3402/tellusa.v28i6.11316.

  • Hayashi, Y., 1980: Estimation of nonlinear energy transfer spectra by the cross-spectral method. J. Atmos. Sci., 37, 299307, https://doi.org/10.1175/1520-0469(1980)037<0299:EONETS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hochet, A., T. Huck, O. Arzel, F. Sévellec, A. Colin de Verdière, M. Mazloff, and B. Cornuelle, 2020: Direct temporal cascade of temperature variance in eddy-permitting simulations of multidecadal variability. J. Climate, 33, 94099425, https://doi.org/10.1175/JCLI-D-19-0921.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., W. K. Dewar, P. D. Killworth, and J. R. Blundell, 2003: A quasi-geostrophic coupled model (Q-GCM). Mon. Wea. Rev., 131, 22612278, https://doi.org/10.1175/1520-0493(2003)131<2261:AQCMQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., W. K. Dewar, P. D. Killworth, and J. R. Blundell, 2006: Decadal variability of the midlatitude climate system driven by the ocean circulation. J. Climate, 19, 11491166, https://doi.org/10.1175/JCLI3651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., J. R. Blundell, W. K. Dewar, and P. D. Killworth, 2014: Formulation and users’ guide for Q-GCM. https://q-gcm.org/downloads.html.

  • Hoyer, S., and J. Hamman, 2017: xarray: N-D labeled arrays and datasets in Python. J. Open Res. Software, 5, 10, https://doi.org/10.5334/jors.148.

  • Hunter, J. D., 2007: Matplotlib: A 2D graphics environment. Comput. Sci. Eng., 9, 9095, https://doi.org/10.1109/MCSE.2007.55.

  • Kirtman, B. P., and et al. , 2012: Impact of ocean model resolution on CCSM climate simulations. Climate Dyn., 39, 13031328, https://doi.org/10.1007/s00382-012-1500-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., N. Perlin, and L. Siqueira, 2017: Ocean eddies and climate predictability. Chaos, 27, 126902, https://doi.org/10.1063/1.4990034.

  • Kravtsov, S., W. Dewar, P. Berloff, J. McWilliams, and M. Ghil, 2007: A highly nonlinear coupled mode of decadal variability in a mid-latitude ocean–atmosphere model. Dyn. Atmos. Oceans, 43, 123150, https://doi.org/10.1016/j.dynatmoce.2006.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 22332256, https://doi.org/10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambaerts, J., G. Lapeyre, R. Plougonven, and P. Klein, 2013: Atmospheric response to sea surface temperature mesoscale structures. J. Geophys. Res. Atmos., 118, 96119621, https://doi.org/10.1002/jgrd.50769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, S. M., D. J. Vimont, A. C. Clement, and B. P. Kirtman, 2018: How momentum coupling affects SST variance and large-scale Pacific climate variability in CESM. J. Climate, 31, 29272944, https://doi.org/10.1175/JCLI-D-17-0645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and E. Di Lorenzo, 2018: Mechanisms and predictability of Pacific decadal variability. Curr. Climate Change Rep., 4, 128144, https://doi.org/10.1007/s40641-018-0090-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, P. E., B. K. Arbic, A. M. Hogg, A. E. Kiss, J. R. Munroe, and J. R. Blundell, 2020: Frequency-domain analysis of the energy budget in an idealized coupled ocean–atmosphere model. J. Climate, 33, 707726, https://doi.org/10.1175/JCLI-D-19-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menary, M. B., D. L. R. Hodson, J. I. Robson, R. T. Sutton, and R. A. Wood, 2015: A mechanism of internal decadal Atlantic Ocean variability in a high-resolution coupled climate model. J. Climate, 28, 77647785, https://doi.org/10.1175/JCLI-D-15-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, https://doi.org/10.1038/nature06690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Rourke, A. K., B. K. Arbic, and S. M. Griffies, 2018: Frequency-domain analysis of atmospherically forced versus intrinsic ocean surface kinetic energy variability in GFDL’s CM2-O model hierarchy. J. Climate, 31, 17891810, https://doi.org/10.1175/JCLI-D-17-0024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. Gula, S. Masson, and J. C. McWilliams, 2016: Control and stabilization of the Gulf Stream by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 34393453, https://doi.org/10.1175/JPO-D-16-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sérazin, G., T. Penduff, B. Barnier, J.-M. Molines, B. K. Arbic, M. Müller, and L. Terray, 2018: Inverse cascades of kinetic energy as a source of intrinsic variability: A global OGCM study. J. Phys. Oceanogr., 48, 13851408, https://doi.org/10.1175/JPO-D-17-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheng, J., and Y. Hayashi, 1990: Observed and simulated energy cycles in the frequency domain. J. Atmos. Sci., 47, 12431254, https://doi.org/10.1175/1520-0469(1990)047<1243:OASECI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., and et al. , 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., F. O. Bryan, S. P. Bishop, S. Larson, and R. A. Tomas, 2020: What drives upper-ocean temperature variability in coupled climate models and observations? J. Climate, 33, 577596, https://doi.org/10.1175/JCLI-D-19-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smirnov, D., M. Newman, M. A. Alexander, Y.-O. Kwon, and C. Frankignoul, 2015: Investigating the local atmospheric response to a realistic shift in the Oyashio sea surface temperature front. J. Climate, 28, 11261147, https://doi.org/10.1175/JCLI-D-14-00285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and M. R. Allen, 1997: Decadal predictability of North Atlantic sea surface temperature and climate. Nature, 388, 563567, https://doi.org/10.1038/41523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, C., C. W. Hughes, and J. R. Blundell, 2015: Forced and intrinsic variability in the response to increased wind stress of an idealized Southern Ocean. J. Geophys. Res. Oceans, 120, 113130, https://doi.org/10.1002/2014JC010315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and Z. Liu, 2005: North Atlantic decadal variability: Air–sea coupling, oceanic memory, and potential Northern Hemisphere resonance. J. Climate, 18, 331349, https://doi.org/10.1175/JCLI-3264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 170 170 68
Full Text Views 41 41 26
PDF Downloads 52 52 35

Drivers of Atmospheric and Oceanic Surface Temperature Variance: A Frequency Domain Approach

View More View Less
  • 1 Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan
  • | 2 Research School of Earth Sciences and ARC Centre of Excellence for Climate Extremes, Australian National University, Canberra, Australian Capital Territory, Australia
© Get Permissions
Restricted access

Abstract

Ocean–atmosphere coupling modifies the variability of Earth’s climate over a wide range of time scales. However, attribution of the processes that generate this variability remains an outstanding problem. In this article, air–sea coupling is investigated in an eddy-resolving, medium-complexity, idealized ocean–atmosphere model. The model is run in three configurations: fully coupled, partially coupled (where the effect of the ocean geostrophic velocity on the sea surface temperature field is minimal), and atmosphere-only. A surface boundary layer temperature variance budget analysis computed in the frequency domain is shown to be a powerful tool for studying air–sea interactions, as it differentiates the relative contributions to the variability in the temperature field from each process across a range of time scales (from daily to multidecadal). This method compares terms in the ocean and atmosphere across the different model configurations to infer the underlying mechanisms driving temperature variability. Horizontal advection plays a dominant role in driving temperature variance in both the ocean and the atmosphere, particularly at time scales shorter than annual. At longer time scales, the temperature variance is dominated by strong coupling between atmosphere and ocean. Furthermore, the Ekman transport contribution to the ocean’s horizontal advection is found to underlie the low-frequency behavior in the atmosphere. The ocean geostrophic eddy field is an important driver of ocean variability across all frequencies and is reflected in the atmospheric variability in the western boundary current separation region at longer time scales.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paige E. Martin, paigemar@umich.edu

Abstract

Ocean–atmosphere coupling modifies the variability of Earth’s climate over a wide range of time scales. However, attribution of the processes that generate this variability remains an outstanding problem. In this article, air–sea coupling is investigated in an eddy-resolving, medium-complexity, idealized ocean–atmosphere model. The model is run in three configurations: fully coupled, partially coupled (where the effect of the ocean geostrophic velocity on the sea surface temperature field is minimal), and atmosphere-only. A surface boundary layer temperature variance budget analysis computed in the frequency domain is shown to be a powerful tool for studying air–sea interactions, as it differentiates the relative contributions to the variability in the temperature field from each process across a range of time scales (from daily to multidecadal). This method compares terms in the ocean and atmosphere across the different model configurations to infer the underlying mechanisms driving temperature variability. Horizontal advection plays a dominant role in driving temperature variance in both the ocean and the atmosphere, particularly at time scales shorter than annual. At longer time scales, the temperature variance is dominated by strong coupling between atmosphere and ocean. Furthermore, the Ekman transport contribution to the ocean’s horizontal advection is found to underlie the low-frequency behavior in the atmosphere. The ocean geostrophic eddy field is an important driver of ocean variability across all frequencies and is reflected in the atmospheric variability in the western boundary current separation region at longer time scales.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paige E. Martin, paigemar@umich.edu
Save