• Ao, C. O., D. E. Waliser, S. K. Chan, J.-L. Li, B. Tian, F. Xie, and A. J. Mannucci, 2012: Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles. J. Geophys. Res., 117, D16117, https://doi.org/10.1029/2012JD017598.

    • Search Google Scholar
    • Export Citation
  • Ao, Y., J. Li, Z. Li, S. Lyu, C. Jiang, and M. Wang, 2017: Relation between the atmospheric boundary layer and impact factors under severe surface thermal conditions. Adv. Meteor., 2017, 8352461, https://doi.org/10.1155/2017/8352461.

    • Search Google Scholar
    • Export Citation
  • Bloomfield, H., L. Shaffrey, K. I. Hodges, and P. L. Vidale, 2018: A critical assessment of the long-term changes in the wintertime surface Arctic Oscillation and Northern Hemisphere storminess in the ERA20C reanalysis. Environ. Res. Lett., 13, 94004, https://doi.org/10.1088/1748-9326/aad5c5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., A. Gettelman, C. Hannay, V. E. Larson, R. B. Neale, C. Craig, and C. C. Chen, 2018: The path to CAM6: Coupled simulations with CAM5.4 and CAM5.5. Geosci. Model Dev., 11, 235255, https://doi.org/10.5194/gmd-11-235-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., F. R. Robertson, L. Takacs, A. Molod, and D. Mocko, 2017: Atmospheric water balance and variability in the MERRA-2 reanalysis. J. Climate, 30, 11771196, https://doi.org/10.1175/JCLI-D-16-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brahmanandam, P. S., V. N. Kumar, G. A. Kumar, M. R. Rao, K. Samatha, and S. Tulasi, 2020: A few important features of global atmospheric boundary layer heights estimated using COSMIC radio occultation retrieved data. Indian J. Phys., 94, 555563, https://doi.org/10.1007/s12648-019-01514-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2016: Understanding decreases in land relative humidity with global warming: Conceptual model and GCM simulations. J. Climate, 29, 90459061, https://doi.org/10.1175/JCLI-D-16-0351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, K. M., and R. Wood, 2013: The seasonal cycle of planetary boundary layer depth determined using COSMIC radio occultation data. J. Geophys. Res. Atmos., 118, 12 42212 434, https://doi.org/10.1002/2013JD020147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., T. Zhou, L. Zhang, X. Chen, W. Zhang, and J. Jiang, 2020: Global land monsoon precipitation changes in CMIP6 projections. Geophys. Res. Lett., 47, e2019GL086902, https://doi.org/10.1029/2019GL086902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and E. K. Vizy, 2015: Detection and analysis of an amplified warming of the Sahara Desert. J. Climate, 28, 65606580, https://doi.org/10.1175/JCLI-D-14-00230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Copernicus Climate Change Service, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store, accessed 4 June 2020, https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset.

  • Copernicus Climate Change Service, 2020: ERA5: Uncertainty estimation. Accessed 4 June 2020, https://confluence.ecmwf.int/display/CKB/ERA5%3A+uncertainty+estimation.

  • Dang, R., H. Li, Z. Li, and Y. Yang, 2016: Statistical analysis of relationship between daytime lidar-derived planetary boundary layer height and relevant atmospheric variables in the semiarid region in northwest China. Adv. Meteor., 2016, 5375918, https://doi.org/10.1155/2016/5375918.

    • Search Google Scholar
    • Export Citation
  • Darand, M., and F. Zandkarimi, 2019: Identification of atmospheric boundary layer height and trends over Iran using high-resolution ECMWF reanalysis dataset. Theor. Appl. Climatol., 137, 14571465, https://doi.org/10.1007/s00704-018-2691-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davy, R., 2018: The climatology of the atmospheric boundary layer in contemporary global climate models. J. Climate, 31, 91519173, https://doi.org/10.1175/JCLI-D-17-0498.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davy, R., and I. Esau, 2014: Planetary boundary layer depth in global climate models induced biases in surface climatology. 23 pp., https://arxiv.org/pdf/1409.8426.

  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., J. Sillmann, S. Wild, L. V. Alexander, T. Lippmann, and F. W. Zwiers, 2014: Consistency of temperature and precipitation extremes across various global gridded in situ and reanalysis datasets. J. Climate, 27, 50195035, https://doi.org/10.1175/JCLI-D-13-00405.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dosio, A., and et al. , 2019: What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Climate Dyn., 53, 58335858, https://doi.org/10.1007/s00382-019-04900-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J., K. Wang, J. Wang, S. Jiang, and C. Zhou, 2018: Diurnal cycle of surface air temperature within China in current reanalyses: Evaluation and diagnostics. J. Climate, 31, 45854603, https://doi.org/10.1175/JCLI-D-17-0773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durre, I., and X. Yin, 2008: Enhanced radiosonde data for studies of vertical structure. Bull. Amer. Meteor. Soc., 89, 12571262, https://doi.org/10.1175/2008BAMS2603.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durre, I., and X. Yin, 2011: Enhancements of the dataset of sounding parameters derived from the Integrated Global Radiosonde Archive. 23rd Conf. on Climate Variability and Change, Seattle, WA, Amer. Meteor. Soc., 6B.2, https://ams.confex.com/ams/91Annual/webprogram/Paper179437.html.

  • Dutton, J. A., 1976: The Ceaseless Wind: An Introduction to the Theory of Atmospheric Motion. 1st ed. McGraw-Hill, 579 pp.

  • Dytham, C., 2011: Choosing and Using Statistics: A Biologist’s Guide. 3rd ed. Wiley, 320 pp.

  • Evan, A. T., C. Flamant, C. Lavaysse, C. Kocha, and A. Saci, 2015: Water vapor–forced greenhouse warming over the Sahara Desert and the recent recovery from the Sahelian drought. J. Climate, 28, 108123, https://doi.org/10.1175/JCLI-D-14-00039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gamo, M., 1996: Thickness of the dry convection and large-scale subsidence above deserts. Bound.-Layer Meteor., 79, 265278, https://doi.org/10.1007/BF00119441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia-Carreras, L., and et al. , 2015: The turbulent structure and diurnal growth of the Saharan atmospheric boundary layer. J. Atmos. Sci., 72, 693713, https://doi.org/10.1175/JAS-D-13-0384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Gelaro, R., and et al. , 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gertler, C., and P. O’Gorman, 2019: Changing available energy for extratropical cyclones and associated convection in Northern Hemisphere summer. Proc. Natl. Acad. Sci. USA, 116, 41054110, https://doi.org/10.1073/pnas.1812312116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Global Modeling and Assimilation Office, 2015a: MERRA-2 tavgU_2d_slv_Nx: 2d,diurnal,Time-Averaged,Single-Level,Assimilation,Single-Level Diagnostics V5.12.4. Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 20 October 2020, https://doi.org/10.5067/AFOK0TPEVQEK.

    • Crossref
    • Export Citation
  • Global Modeling and Assimilation Office, 2015b: MERRA-2 tavgU_2d_flx_Nx: 2d,diurnal,Time-Averaged,Single-Level,Assimilation,Surface Flux Diagnostics V5.12.4. Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 20 October 2020, https://doi.org/10.5067/LUHPNWAKYIO3.

    • Crossref
    • Export Citation
  • Global Modeling and Assimilation Office, 2015c: MERRA-2 instU_3d_ana_Np: 3d,diurnal,Instantaneous,Pressure-Level,Analysis,Analyzed Meteorological Fields V5.12.4. Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 20 October 2020, https://doi.org/10.5067/TRD91YO9S6E7.

    • Crossref
    • Export Citation
  • Global Modeling and Assimilation Office, 2015d: MERRA-2 tavgU_2d_flx_Nx: 2d,diurnal,Time-Averaged,Single-Level,Assimilation,Surface Flux Diagnostics V5.12.4. Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 20 October 2020, https://doi.org/10.5067/LUHPNWAKYIO3.

    • Crossref
    • Export Citation
  • Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002: A pdf-based model for boundary layer clouds Part I: Method and model description. J. Atmos. Sci., 59, 35403551, https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, J., and et al. , 2016: The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data. Atmos. Chem. Phys., 16, 13 30913 319, https://doi.org/10.5194/acp-16-13309-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, J., and et al. , 2019: Shift in the temporal trend of boundary layer height in China using long-term (1979–2016) radiosonde data. Geophys. Res. Lett., 46, 60806089, https://doi.org/10.1029/2019GL082666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., P. A. Dirmeyer, X. Gao, and M. Zhao, 2007: Improving the quality of simulated soil moisture with a multi-model ensemble approach. Quart. J. Roy. Meteor. Soc., 133, 731747, https://doi.org/10.1002/qj.48.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haimberger, L., C. Tavolato, and S. Sperka, 2012: Homogenization of the global radiosonde dataset through combined comparison with reanalysis background series and neighboring stations. J. Climate, 25, 81088131, https://doi.org/10.1175/JCLI-D-11-00668.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and et al. , 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Ho, S., L. Peng, R. A. Anthes, Y. Kuo, and H. Lin, 2015: Marine boundary layer heights and their longitudinal, diurnal, and interseasonal variability in the southeastern Pacific using COSMIC, CALIOP, and radiosonde data. J. Climate, 28, 28562872, https://doi.org/10.1175/JCLI-D-14-00238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, S., and et al. , 2020: The COSMIC/FORMOSAT-3 Radio Occultation Mission after 12 years: Accomplishments, remaining challenges, and potential impacts of COSMIC-2. Bull. Amer. Meteor. Sci., 101, E1107E1136, https://doi.org/10.1175/BAMS-D-18-0290.1.

    • Search Google Scholar
    • Export Citation
  • Hofer, M., B. Marzeion, and T. Mölg, 2012: Comparing the skill of different reanalyses and their ensembles as predictors for daily air temperature on a glaciated mountain (Peru). Climate Dyn., 39, 19691980, https://doi.org/10.1007/s00382-012-1501-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and et al. , 2013: Stable atmospheric boundary layers and diurnal cycles—Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 16911706, https://doi.org/10.1175/BAMS-D-11-00187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holzworth, G. C., 1964: Estimates of mean maximum mixing depths in the contiguous United States. Mon. Wea. Rev., 92, 235242, https://doi.org/10.1175/1520-0493(1964)092<0235:EOMMMD>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1996: On the existence and strength of the summer subtropical anticyclones. Bull. Amer. Meteor. Soc., 77, 12871291, https://doi.org/10.1175/1520-0477-77.6.1279.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1585 pp.

  • Jin, Q., J. Wei, and Z.-L. Yang, 2014: Positive response of Indian summer rainfall to Middle East dust. Geophys. Res. Lett., 41, 40684074, https://doi.org/10.1002/2014GL059980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1970: Rank Correlation Methods. Griffin, 260 pp.

  • Kharin, V. V., and F. W. Zwiers, 2002: Climate predictions with multimodel ensembles. J. Climate, 15, 793799, https://doi.org/10.1175/1520-0442(2002)015<0793:CPWME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, G.-U., K.-H. Seo, and D. Chen, 2019: Climate change over the Mediterranean and current destruction of marine ecosystem. Sci. Rep., 9, 18813, https://doi.org/10.1038/s41598-019-55303-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and M. C. Todd, 2012: Mineral dust aerosols over the Sahara: Meteorological controls on emission and transport and implications for modeling. Rev. Geophys., 50, RG1007, https://doi.org/10.1029/2011RG000362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lanzante, J. R., S. A. Klein, and D. J. Seidel, 2003: Temporal homogenization of monthly radiosonde temperature data. Part I: Methodology. J. Climate, 16, 224240, https://doi.org/10.1175/1520-0442(2003)016<0224:THOMRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, V. E., J.-C. Golaz, and W. R. Cotton, 2002: Small-scale and mesoscale variability in cloudy boundary layers: Joint probability density functions. J. Atmos. Sci., 59, 35193539, https://doi.org/10.1175/1520-0469(2002)059<3519:SSAMVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T. R., and S. F. J. De Wekker, 2016: Estimating daytime planetary boundary layer heights over a valley from rawinsonde observations at a nearby airport: An application to the Page Valley in Virginia, USA. J. Appl. Meteor. Climatol., 55, 791809, https://doi.org/10.1175/JAMC-D-15-0300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., Y. Chu, X. Li, and Y. Dong, 2020: Long-term trends of global maximum atmospheric mixed layer heights derived from radiosonde measurements. Environ. Res. Lett., 15, 034054, https://doi.org/10.1088/1748-9326/ab7952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S., and X.-Z. Liang, 2010: Observed diurnal cycle climatology of planetary boundary layer height. J. Climate, 23, 57905809, https://doi.org/10.1175/2010JCLI3552.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGrath-Spangler, E. L., and A. Molod, 2014: Comparison of GEOS-5 AGCM planetary boundary layer depths computed with various definitions. Atmos. Chem. Phys., 14, 67176727, https://doi.org/10.5194/acp-14-6717-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGrath-Spangler, E. L., A. Molod, L. E. Ott, and S. Pawson, 2015: Impact of planetary boundary layer turbulence on model climate and tracer transport. Atmos. Chem. Phys., 15, 72697286, https://doi.org/10.5194/acp-15-7269-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., H. Salmun, and M. Dempsey, 2015: Estimating planetary boundary layer heights from NOAA profiler network wind profiler data. J. Atmos. Oceanic Technol., 32, 15451561, https://doi.org/10.1175/JTECH-D-14-00155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and C. J. Muller, 2010: How closely do changes in surface and column water vapor follow Clausius–Clapeyron scaling in climate change simulations? Environ. Res. Lett., 5, 025207, https://doi.org/10.1088/1748-9326/5/2/025207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and et al. , 2013: The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C). ECMWF ERA Rep. 14, 59 pp., http://www.ecmwf.int/en/elibrary/11699-data-assimilation-system-and-initial-performance-evaluation-ecmwf-pilot-reanalysis.

  • Potter, G. L., L. Carriere, J. Hertz, M. Bosilovich, D. Duffy, T. Lee, and D. N. Williams, 2018: Enabling reanalysis research using the Collaborative Reanalysis Technical Environment (CREATE). Bull. Amer. Meteor. Soc., 99, 677687, https://doi.org/10.1175/BAMS-D-17-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S. B., F. Delage, R. Colman, and A. Moise, 2012: Consensus on twenty-first-century rainfall projections in climate models more widespread than previously thought. J. Climate, 25, 37923809, https://doi.org/10.1175/JCLI-D-11-00354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, F. R., M. G. Bosilovich, J. B. Roberts, R. H. Reichle, R. Adler, L. Ricciardulli, W. Berg, and G. J. Huffman, 2014: Consistency of estimated global water cycle variations over the satellite era. J. Climate, 27, 61356154, https://doi.org/10.1175/JCLI-D-13-00384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122, 13851404, https://doi.org/10.1002/qj.49712253408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmun, H., A. Molod, and A. Collow, 2018: The use of MERRA-2 near surface meteorology to understand the behavior of observed planetary boundary layer heights over the U.S. Great Plains. 2017 Fall Meeting, New Orleans, LA, Amer. Geophys. Union, Abstract A13M-2638.

  • Sathyanadh, A., T. Prabhakaran, C. Patil, and A. Karipot, 2017: Planetary boundary layer height over the Indian subcontinent: Variability and controls with respect to monsoon. Atmos. Res., 195, 4461, https://doi.org/10.1016/j.atmosres.2017.05.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., C. O. Ao, and K. Li, 2010: Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res., 115, D16113, https://doi.org/10.1029/2009JD013680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Y. Zhang, A. Beljaars, J.-C. Golaz, A. R. Jacobson, and B. Medeiros, 2012: Climatology of the planetary boundary layer over the continental United States and Europe. J. Geophys. Res., 117, D17106, https://doi.org/10.1029/2012JD018143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and Q. Fu, 2014: A drier future? Science, 343, 737739, https://doi.org/10.1126/science.1247620.

  • Simmons, A. J., K. M. Willett, P. D. Jones, P. W. Thorne, and D. P. Dee, 2010: Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res., 115, D01110, https://doi.org/10.1029/2009JD012442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stipanuk, G. S., 1973: Algorithms for generating a skew-t, log-p diagram and computing selected meteorological quantities. Atmospheric Sciences Laboratory Tech. Rep. AD 769739, 41 pp., https://apps.dtic.mil/dtic/tr/fulltext/u2/769739.pdf.

    • Crossref
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer, 680 pp.

    • Crossref
    • Export Citation
  • Sun, W., and et al. , 2019: Northern Hemisphere land monsoon precipitation increased by the Green Sahara during middle Holocene. Geophys. Res. Lett., 46, 98709879, https://doi.org/10.1029/2019GL082116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svensson, G., and J. Lindvall, 2015: Evaluation of near-surface variables and the vertical structure of the boundary layer in CMIP5 models. J. Climate, 28, 52335253, https://doi.org/10.1175/JCLI-D-14-00596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talbot, C., P. Augustin, C. Leroy, V. Willart, H. Delbarre, and G . Khomenko, 2007: Impact of a sea breeze on the boundary-layer dynamics and the atmospheric stratification in a coastal area of the North Sea. Bound.-Layer Meteor., 125, 133154, https://doi.org/10.1007/s10546-007-9185-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theil, H. 1950: A rank-invariant method of linear and polynomial regression analysis. Theil’s Contributions to Economics and Econometrics, R. B. Koerts et al., Eds., Advanced Studies in Theoretical and Applied Econometrics, Vol. 23, Springer, 345–384.

  • Thomas, N., and S. Nigam, 2018: Twentieth-century climate change over Africa: Seasonal hydroclimate trends and Sahara Desert expansion. J. Climate, 31, 33493370, https://doi.org/10.1175/JCLI-D-17-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., D. E. Parker, S. F. B. Tett, P. D. Jones, M. McCarthy, H. Coleman, and P. Brohan, 2005: Revisiting radiosonde upper air temperatures from 1958 to 2002. J. Geophys. Res., 110, D18105, https://doi.org/10.1029/2004JD005753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., J. R. Lanzante, T. C. Peterson, D. J. Seidel, and K. P. Shine, 2011: Tropospheric temperature trends: History of an ongoing controversy. Wiley Interdiscip. Rev.: Climate Change, 2, 6688, https://doi.org/10.1002/wcc.80.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., T. Koike, and K. Onogi, 2008: Progress and prospects for reanalysis for weather and climate. Eos, Trans. Amer. Geophys. Union, 89, 234235, https://doi.org/10.1029/2008EO260002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., and et al. , 2017: Recent changes of relative humidity: Regional connection with land and ocean processes. Earth Syst. Dyn., 9, 915937, https://doi.org/10.5194/ESD-9-915-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vizy, E. K., and K. H. Cook, 2017: Seasonality of the observed amplified Sahara warming trend and implications for Sahel rainfall. J. Climate, 30, 30733094, https://doi.org/10.1175/JCLI-D-16-0687.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogelezang, D. H. P., and A. A. M. Holtslag, 1996: Evaluation and model impacts of alternative boundary-layer height formulation. Bound. Layer Meteor ., 81, 245269, https://doi.org/10.1007/BF02430331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Engeln, A., and J. Teixeira, 2013: A planetary boundary layer height climatology derived from ECMWF reanalysis data. J. Climate, 26, 65756590, https://doi.org/10.1175/JCLI-D-12-00385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Salzen, K., and et al. , 2013: The Canadian fourth generation atmospheric global climate model (CanAM4). Part I: Representation of physical processes. Atmos.–Ocean, 51, 104125, https://doi.org/10.1080/07055900.2012.755610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vose, R. S., D. R. Easterling, and B. Gleason, 2005: Maximum and minimum temperature trends for the globe: An update through 2004. Geophys. Res. Lett., 32, L23822, https://doi.org/10.1029/2005GL024379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, H.-J. Kim, P. J. Webster, S.-O. Yim, 2012: Recent change of the global monsoon precipitation (1979–2008). Climate Dyn., 39, 11231135, https://doi.org/10.1007/s00382-011-1266-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., C. Jin, and J. Liu, 2020: Understanding future change of global monsoons projected by CMIP6 models. J. Climate, 33, 64716489, https://doi.org/10.1175/JCLI-D-19-0993.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. Y., and K. Wang, 2016: Homogenized variability of radiosonde derived atmospheric boundary layer height over the global land surface from 1973 to 2014. J. Climate, 29, 68936908, https://doi.org/10.1175/JCLI-D-15-0766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, N., L. Zhou, and Y. Dai, 2017a: Evaluation of simulated climatological diurnal temperature range in CMIP5 models from the perspective of planetary boundary layer turbulent mixing. Climate Dyn., 49 (1-2), 122, https://doi.org/10.1007/s00382-016-3323-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, N., L. Zhou, and Y. Dai, 2017b: Observational evidence for desert amplification using multiple satellite datasets Sci. Rep., 7, 2043, https://doi.org/10.1038/S41598-017-02064-W.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willett, K. M., R. J. H. Dunn, P. W. Thorne, S. Bell, M. de Podesta, D. E. Parker, P. D. Jones, and C. N. Williams Jr., 2014: HadISDH land surface multi-variable humidity and temperature record for climate monitoring. Climate Past, 10, 19832006, https://doi.org/10.5194/cp-10-1983-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y. H., D. J. Seidel, and S. D. Zhang, 2013: Trends in planetary boundary layer height over Europe. J. Climate, 26, 10 07110 076, https://doi.org/10.1175/JCLI-D-13-00108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, J., 2011: A simulative study of the thermal mechanism for development of the convective boundary layer in the arid zone of northwest China. Acta Meteor. Sin., 69, 10291037.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., W. Mao, K. Zhang, Y. Ma, H. Li, and W. Zhang, 2017: Climatic variations in the boundary layer height of arid and semiarid areas in East Asia and North Africa. J. Meteor. Soc. Japan, 95, 181197, https://doi.org/10.2151/jmsj.2017-010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., J. Wang, A. Dai, and P. W. Thorne, 2020: A new approach to homogenize global sub-daily radiosonde temperature data from 1958 to 2018. J. Climate, 34, 11631183, https://doi.org/10.1175/JCLI-D-20-0352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., 2016: Desert amplification in a warming climate. Sci. Rep., 6, 31065, https://doi.org/10.1038/SREP31065.

  • Zhou, L., 2021: Diurnal asymmetry of desert amplification and its possible connections to planetary boundary layer height: A case study for the Arabian Peninsula. Climate Dyn., https://doi.org/10.1007/S00382-021-05634-X, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., R. E. Dickinson, Y. Tian, and R. S. Vose, 2007: Impact of vegetation removal and soil aridation on diurnal temperature range in a semiarid region—Application to the Sahel. Proc. Natl. Acad. Sci. USA, 104, 17 93717 942, https://doi.org/10.1073/pnas.0700290104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., A. Dai, Y. Dai, R. S. Vose, C.-Z. Zou, Y. Tian, and H. Chen, 2009: Spatial dependence of diurnal temperature range trends on precipitation from 1950 to 2004. Climate Dyn., 32, 429440, https://doi.org/10.1007/s00382-008-0387-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., R. E. Dickinson, A. Dai, and P. Dirmeyer, 2010: Detection and attribution of anthropogenic forcing to diurnal temperature range changes from 1950 to 1999: Comparing multi-model simulations with observations. Climate Dyn., 35, 12891307, https://doi.org/10.1007/s00382-009-0644-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., H. Chen, and Y. Dai, 2015: Stronger warming amplification over drier ecoregions observed since 1979. Environ. Res. Lett., 10, 064012, https://doi.org/10.1088/1748-9326/10/6/064012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., H. Chen, W. Hua, Y. Dai, and N. Wei, 2016: Mechanisms for stronger warming over drier ecoregions observed since 1979. Climate Dyn., 47, 29552974, https://doi.org/10.1007/s00382-016-3007-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 119 119 119
Full Text Views 43 43 43
PDF Downloads 50 50 50

Rising Planetary Boundary Layer Height over the Sahara Desert and Arabian Peninsula in a Warming Climate

View More View Less
  • 1 Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York
  • | 2 New York State Department of Environmental Conservation, Albany, New York
  • | 3 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China
  • | 4 Center for Satellite Applications and Research, NESDIS/NOAA, College Park, Maryland
  • | 5 Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
© Get Permissions
Restricted access

Abstract

Turbulent mixing in the planetary boundary layer (PBL) governs the vertical exchange of heat, moisture, momentum, trace gases, and aerosols in the surface–atmosphere interface. The PBL height (PBLH) represents the maximum height of the free atmosphere that is directly influenced by Earth’s surface. This study uses a multidata synthesis approach from an ensemble of multiple global datasets of radiosonde observations, reanalysis products, and climate model simulations to examine the spatial patterns of long-term PBLH trends over land between 60°S and 60°N for the period 1979–2019. By considering both the sign and statistical significance of trends, we identify large-scale regions where the change signal is robust and consistent to increase our confidence in the obtained results. Despite differences in the magnitude and sign of PBLH trends over many areas, all datasets reveal a consensus on increasing PBLH over the enormous and very dry Sahara Desert and Arabian Peninsula (SDAP) and declining PBLH in India. At the global scale, the changes in PBLH are significantly correlated positively with the changes in surface heating and negatively with the changes in surface moisture, consistent with theory and previous findings in the literature. The rising PBLH is in good agreement with increasing sensible heat and surface temperature and decreasing relative humidity over the SDAP associated with desert amplification, while the declining PBLH resonates well with increasing relative humidity and latent heat and decreasing sensible heat and surface warming in India. The PBLH changes agree with radiosonde soundings over the SDAP but cannot be validated over India due to lack of good-quality radiosonde observations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0645.s1.

Corresponding author: Liming Zhou, lzhou@albany.edu

Abstract

Turbulent mixing in the planetary boundary layer (PBL) governs the vertical exchange of heat, moisture, momentum, trace gases, and aerosols in the surface–atmosphere interface. The PBL height (PBLH) represents the maximum height of the free atmosphere that is directly influenced by Earth’s surface. This study uses a multidata synthesis approach from an ensemble of multiple global datasets of radiosonde observations, reanalysis products, and climate model simulations to examine the spatial patterns of long-term PBLH trends over land between 60°S and 60°N for the period 1979–2019. By considering both the sign and statistical significance of trends, we identify large-scale regions where the change signal is robust and consistent to increase our confidence in the obtained results. Despite differences in the magnitude and sign of PBLH trends over many areas, all datasets reveal a consensus on increasing PBLH over the enormous and very dry Sahara Desert and Arabian Peninsula (SDAP) and declining PBLH in India. At the global scale, the changes in PBLH are significantly correlated positively with the changes in surface heating and negatively with the changes in surface moisture, consistent with theory and previous findings in the literature. The rising PBLH is in good agreement with increasing sensible heat and surface temperature and decreasing relative humidity over the SDAP associated with desert amplification, while the declining PBLH resonates well with increasing relative humidity and latent heat and decreasing sensible heat and surface warming in India. The PBLH changes agree with radiosonde soundings over the SDAP but cannot be validated over India due to lack of good-quality radiosonde observations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0645.s1.

Corresponding author: Liming Zhou, lzhou@albany.edu
Save