• Block, K., and T. Mauritsen, 2013: Forcing and feedback in the MPI-ESM-LR coupled model under abruptly quadrupled CO2. J. Adv. Model. Earth Syst., 5, 676691, https://doi.org/10.1002/jame.20041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boeke, R. C., and P. C. Taylor, 2018: Seasonal energy exchange in sea ice retreat regions contributes to differences in projected Arctic warming. Nat. Commun., 9, 5017, https://doi.org/10.1038/s41467-018-07061-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and et al. , 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, https://doi.org/10.1175/JCLI3819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and et al. , 2020: Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst., 12, e2019MS002010, https://doi.org/10.1029/2019MS002010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. W., N. Cressie, X. Qu, and A. Hall, 2018: A hierarchical statistical framework for emergent constraints: Application to snow-albedo feedback. Geophys. Res. Lett., 45, 13 05013 059, https://doi.org/10.1029/2018GL080082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brient, F., 2020: Reducing uncertainties in climate projections with emergent constraints: Concepts, examples and prospects. Adv. Atmos. Sci., 37, 115, https://doi.org/10.1007/s00376-019-9140-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldwell, P. M., M. D. Zelinka, and S. A. Klein, 2018: Evaluating emergent constraints on equilibrium climate sensitivity. J. Climate, 31, 39213942, https://doi.org/10.1175/JCLI-D-17-0631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Y., S. Liang, X. Chen, and T. He, 2015: Assessment of sea ice albedo radiative forcing and feedback over the Northern Hemisphere from 1982 to 2009 using satellite and reanalysis data. J. Climate, 28, 12481259, https://doi.org/10.1175/JCLI-D-14-00389.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and et al. , 1991: Interpretation of snow–climate feedback as produced by 17 general circulation models. Science, 253, 888892, https://doi.org/10.1126/science.253.5022.888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheruy, F., and et al. , 2020: Improved near-surface continental climate in IPSL-CM6A-LR by combined evolutions of atmospheric and land surface physics. J. Adv. Model. Earth Syst., 12, e2019MS002005, https://doi.org/10.1029/2019MS002005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collier, N., F. M. Hoffman, D. M. Lawrence, G. Keppel-Aleks, C. D. Koven, W. J. Riley, M. Mu, and J. T. Randerson, 2018: The International Land Model Benchmarking (ILAMB) system: Design, theory, and implementation. J. Adv. Model. Earth Syst., 10, 27312754, https://doi.org/10.1029/2018MS001354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colman, R. A., 2013: Surface albedo feedbacks from climate variability and change. J. Geophys. Res. Atmos., 118, 28272834, https://doi.org/10.1002/jgrd.50230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Decharme, B., E. Brun, A. Boone, C. Delire, P. Le Moigne, and S. Morin, 2016: Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model. Cryosphere, 10, 853877, https://doi.org/10.5194/tc-10-853-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Decharme, B., and et al. , 2019: Recent changes in the ISBA-CTRIP land surface system for use in the CNRM-CM6 climate model and in global off-line hydrological applications. J. Adv. Model. Earth Syst., 11, 12071252, https://doi.org/10.1029/2018MS001545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and et al. , 2017: Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat. Climate Change, 7, 289295, https://doi.org/10.1038/nclimate3241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and et al. , 2019: Fingerprints of internal drivers of Arctic sea ice loss in observations and model simulations. Nat. Geosci., 12, 2833, https://doi.org/10.1038/s41561-018-0256-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., E. Blanchard-Wrigglesworth, A. Schweiger, and P. J. Rasch, 2020: The effect of atmospheric transmissivity on model and observational estimates of the sea ice albedo feedback. J. Climate, 33, 57435765, https://doi.org/10.1175/JCLI-D-19-0674.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essery, R., 2013: Large-scale simulations of snow albedo masking by forests. Geophys. Res. Lett., 40, 55215525, https://doi.org/10.1002/grl.51008.

  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., and et al. , 2019: Taking climate model evaluation to the next level. Nat. Climate Change, 9, 102110, https://doi.org/10.1038/s41558-018-0355-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., K. M. Shell, M. Barlage, D. K. Perovich, and M. A. Tschudi, 2011: Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nat. Geosci., 4, 151155, https://doi.org/10.1038/ngeo1062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fletcher, C. G., H. Zhao, P. J. Kushner, and R. Fernandes, 2012: Using models and satellite observations to evaluate the strength of snow albedo feedback. J. Geophys. Res., 117, D11117, https://doi.org/10.1029/2012JD017724.

    • Search Google Scholar
    • Export Citation
  • Fletcher, C. G., C. W. Thackeray, and T. M. Burgers, 2015: Evaluating biases in simulated snow albedo feedback in two generations of climate models. J. Geophys. Res. Atmos., 120, 1226, https://doi.org/10.1002/2014JD022546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flynn, C. M., and T. Mauritsen, 2020: On the climate sensitivity and historical warming evolution in recent coupled model ensembles. Atmos. Chem. Phys., 20, 78297842, https://doi.org/10.5194/acp-20-7829-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagné, M., N. P. Gillett, and J. C. Fyfe, 2015: Impact of aerosol emission controls on future Arctic sea ice cover. Geophys. Res. Lett., 42, 84818488, https://doi.org/10.1002/2015GL065504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and et al. , 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., P. L. Langen, and T. Mauritsen, 2014: Polar amplification in CCSM4: Contributions from the lapse rate and surface albedo feedbacks. J. Climate, 27, 44334450, https://doi.org/10.1175/JCLI-D-13-00551.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, A., 2004: The role of surface albedo feedback in climate. J. Climate, 17, 15501568, https://doi.org/10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, A., and X. Qu, 2006: Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys. Res. Lett., 33, L03502, https://doi.org/10.1029/2005GL025127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, A., P. Cox, C. Huntingford, and S. Klein, 2019: Progressing emergent constraints on future climate change. Nat. Climate Change, 9, 269278, https://doi.org/10.1038/s41558-019-0436-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., Y. Xia, and X. Tan, 2017: On the pattern of CO2 radiative forcing and poleward energy transport. J. Geophys. Res. Atmos., 122, 10 57810 593, https://doi.org/10.1002/2017JD027221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., D. A. Hebert, and O. Lecomte, 2013: Level-ice melt ponds in the Los Alamos Sea Ice Model, CICE. Ocean Modell., 71, 2642, https://doi.org/10.1016/j.ocemod.2012.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karlsson, K. G., and et al. , 2017: CLARA-A2: The second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data. Atmos. Chem. Phys., 17, 58095828, https://doi.org/10.5194/acp-17-5809-2017.

    • Search Google Scholar
    • Export Citation
  • Kelley, M., and et al. , 2020: GISS-E2.1: Configurations and climatology. J. Adv. Model. Earth Syst., 12, e2019MS002025, https://doi.org/10.1029/2019MS002025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and A. Hall, 2015: Emergent constraints for cloud feedbacks. Curr. Climate Change Rep., 1, 276287, https://doi.org/10.1007/s40641-015-0027-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., D. Masson, and A. Gettelman, 2013: Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett., 40, 11941199, https://doi.org/10.1002/grl.50256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and et al. , 2019: The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst., 11, 42454287, https://doi.org/10.1029/2018MS001583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levis, S., G. B. Bonan, and P. J. Lawrence, 2007: Present-day springtime high-latitude surface albedo as a predictor of simulated climate sensitivity. Geophys. Res. Lett., 34, L17703, https://doi.org/10.1029/2007GL030775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loranty, M. M., L. T. Berner, S. J. Goetz, Y. Jin, and J. T. Randerson, 2014: Vegetation controls on northern high latitude snow-albedo feedback: Observations and CMIP5 model simulations. Global Change Biol., 20, 594606, https://doi.org/10.1111/gcb.12391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massonnet, F., T. Fichefet, H. Goosse, C. M. Bitz, G. Philippon-Berthier, M. M. Holland, and P. Y. Barriat, 2012: Constraining projections of summer Arctic sea ice. Cryosphere, 6, 13831394, https://doi.org/10.5194/tc-6-1383-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massonnet, F., M. Vancoppenolle, H. Goosse, D. Docquier, T. Fichefet, and E. Blanchard-Wrigglesworth, 2018: Arctic sea-ice change tied to its mean state through thermodynamic processes. Nat. Climate Change, 8, 599603, https://doi.org/10.1038/s41558-018-0204-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and et al. , 2019: Developments in the MPI-M Earth system model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst., 11, 9981038, https://doi.org/10.1029/2018MS001400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. A. Senior, V. Eyring, G. Flato, J. F. Lamarque, R. J. Stouffer, K. E. Taylor, and M. Schlund, 2020: Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv., 6, eaba1981, https://doi.org/10.1126/sciadv.aba1981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meredith, M., and et al. , 2019: Polar regions. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner et al., Eds., IPCC, 203–320.

  • Mudryk, L., P. J. Kushner, C. Derksen, and C. Thackeray, 2017: Snow cover response to temperature in observational and climate model ensembles. Geophys. Res. Lett., 44, 919926, https://doi.org/10.1002/2016GL071789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mudryk, L., M. Santolaria-Otín, G. Krinner, M. Ménégoz, C. Derksen, C. Brutel-Vuilmet, M. Brady, and R. Essery, 2020: Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble. Cryosphere, 14, 24952514, https://doi.org/10.5194/tc-14-2495-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, B. L., N. P. Gillett, A. H. Monahan, and F. W. Zwiers, 2018: Attribution of Arctic sea ice decline from 1953 to 2012 to influences from natural, greenhouse gas, and anthropogenic aerosol forcing. J. Climate, 31, 77717787, https://doi.org/10.1175/JCLI-D-17-0552.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notz, D., and J. Stroeve, 2018: The trajectory towards a seasonally ice-free Arctic Ocean. Curr. Climate Change Rep., 4, 407416, https://doi.org/10.1007/s40641-018-0113-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notz, D., and et al. , 2020: Arctic sea ice in CMIP6. Geophys. Res. Lett., 47, e2019GL086749, https://doi.org/10.1029/2019GL086749.

  • Pendergrass, A. G., 2020: The global-mean precipitation response to CO2-induced warming in CMIP6 models. Geophys. Res. Lett., 47, e2020GL089964, https://doi.org/10.1029/2020GL089964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., A. Conley, and F. M. Vitt, 2018: Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5. Earth Syst. Sci. Data, 10, 317324, https://doi.org/10.5194/essd-10-317-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, https://doi.org/10.1038/ngeo2071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, X., and A. Hall, 2007: What controls the strength of snow-albedo feedback? J. Climate, 20, 39713981, https://doi.org/10.1175/JCLI4186.1.

  • Qu, X., and A. Hall, 2014: On the persistent spread in snow-albedo feedback. Climate Dyn., 42, 6981, https://doi.org/10.1007/s00382-013-1774-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Räisänen, J., 2008: Warmer climate: Less or more snow? Climate Dyn., 30, 307319, https://doi.org/10.1007/s00382-007-0289-y.

  • Sanderson, B. M., R. Knutti, and P. Caldwell, 2015: A representative democracy to reduce interdependency in a multimodel ensemble. J. Climate, 28, 51715194, https://doi.org/10.1175/JCLI-D-14-00362.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaaf, C., and et al. , 2002: First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ., 83, 135148, https://doi.org/10.1016/S0034-4257(02)00091-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlund, M., A. Lauer, P. Gentine, S. C. Sherwood, and V. Eyring, 2020: Emergent constraints on equilibrium climate sensitivity in CMIP5: Do they hold for CMIP6? Earth Syst. Dyn., 11, 12331258, https://doi.org/10.5194/esd-2020-49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, A., M. Flanner, and J. Perket, 2018: Multidecadal variability in surface albedo feedback across CMIP5 models. Geophys. Res. Lett., 45, 19721980, https://doi.org/10.1002/2017GL076293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, and I. Simmonds, 2012: Local and remote controls on observed Arctic warming. Geophys. Res. Lett., 39, L10709, https://doi.org/10.1029/2012GL051598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shell, K. M., J. T. Kiehl, and C. A. Shields, 2008: Using the radiative kernel technique to calculate climate feedbacks in NCAR’s Community Atmospheric Model. J. Climate, 21, 22692282, https://doi.org/10.1175/2007JCLI2044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, C. J., and et al. , 2018: Understanding rapid adjustments to diverse forcing agents. Geophys. Res. Lett., 45, 12 02312 031, https://doi.org/10.1029/2018GL079826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., I. M. Held, R. C. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520, https://doi.org/10.1175/2007JCLI2110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., and D. Notz, 2018: Changing state of Arctic sea ice across all seasons. Environ. Res. Lett., 13, 103001, https://doi.org/10.1088/1748-9326/aade56.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W. N. Meier, 2012: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett., 39, L16502, https://doi.org/10.1029/2012GL052676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., A. Barrett, M. Serreze, and A. Schweiger, 2014: Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness. Cryosphere, 8, 18391854, https://doi.org/10.5194/tc-8-1839-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N. C., J. C. Fyfe, E. Hawkins, J. E. Kay, and A. Jahn, 2015: Influence of internal variability on Arctic sea-ice trends. Nat. Climate Change, 5, 8689, https://doi.org/10.1038/nclimate2483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 3, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thackeray, C. W., and C. G. Fletcher, 2016: Snow albedo feedback: Current knowledge, importance, outstanding issues and future directions. Prog. Phys. Geogr., 40, 392408, https://doi.org/10.1177/0309133315620999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thackeray, C. W., and A. Hall, 2019: An emergent constraint on future Arctic sea-ice albedo feedback. Nat. Climate Change, 9, 972978, https://doi.org/10.1038/s41558-019-0619-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thackeray, C. W., C. G. Fletcher, and C. Derksen, 2014: The influence of canopy snow parameterizations on snow albedo feedback in boreal forest regions. J. Geophys. Res. Atmos., 119, 98109821, https://doi.org/10.1002/2014JD021858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thackeray, C. W., C. G. Fletcher, and C. Derksen, 2015: Quantifying the skill of CMIP5 models in simulating seasonal albedo and snow cover evolution. J. Geophys. Res. Atmos., 120, 58315849, https://doi.org/10.1002/2015JD023325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thackeray, C. W., C. G. Fletcher, L. R. Mudryk, and C. Derksen, 2016: Quantifying the uncertainty in historical and future simulations of Northern Hemisphere spring snow cover. J. Climate, 29, 86478663, https://doi.org/10.1175/JCLI-D-16-0341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thackeray, C. W., X. Qu, and A. Hall, 2018: Why do models produce spread in snow albedo feedback? Geophys. Res. Lett., 45, 62236231, https://doi.org/10.1029/2018GL078493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thackeray, C. W., C. Derksen, C. G. Fletcher, and A. Hall, 2019: Snow and climate: Feedbacks, drivers, and indices of change. Curr. Climate Change Rep., 5, 322333, https://doi.org/10.1007/s40641-019-00143-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, A. K., and E. C. Hunke, 2015: Impacts of a mushy-layer thermodynamic approach in global sea-ice simulations using the CICE sea-ice model. J. Geophys. Res. Oceans, 120, 12531275, https://doi.org/10.1002/2014JC010358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and et al. , 2019: Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J. Adv. Model. Earth Syst., 11, 21772213, https://doi.org/10.1029/2019MS001683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volodin, E. M., and et al. , 2017a: Simulation of the present-day climate with the climate model INMCM5. Climate Dyn., 49, 37153734, https://doi.org/10.1007/s00382-017-3539-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volodin, E. M., and et al. , 2017b: Simulation of modern climate with the new version of the INM RAS climate model. Izv. Atmos. Ocean. Phys., 53, 142155, https://doi.org/10.1134/S0001433817020128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and J. R. Key, 2005: Arctic surface, cloud, and radiation properties based on the AVHRR polar pathfinder dataset. Part I: Spatial and temporal characteristics. J. Climate, 18, 25752593, https://doi.org/10.1175/JCLI3439.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., 2006: Surface albedo feedback estimates for the AR4 climate models. J. Climate, 19, 359365, https://doi.org/10.1175/JCLI3624.1.

  • Wu, T., and et al. , 2019: The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev., 12, 15731600, https://doi.org/10.5194/gmd-12-1573-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and D. L. Hartmann, 2012: Climate feedbacks and their implications for poleward energy flux changes in a warming climate. J. Climate, 25, 608624, https://doi.org/10.1175/JCLI-D-11-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 437 437 437
Full Text Views 63 63 63
PDF Downloads 72 72 72

Assessing Prior Emergent Constraints on Surface Albedo Feedback in CMIP6

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
  • | 2 Atmospheric, Earth, and Energy Division, Lawrence Livermore National Laboratory, Livermore, California
  • | 3 Department of Geography and Environmental Management, University of Waterloo, Waterloo, Ontario, Canada
© Get Permissions
Restricted access

Abstract

An emergent constraint (EC) is a popular model evaluation technique, which offers the potential to reduce intermodel variability in projections of climate change. Two examples have previously been laid out for future surface albedo feedbacks (SAF) stemming from loss of Northern Hemisphere (NH) snow cover (SAFsnow) and sea ice (SAFice). These processes also have a modern-day analog that occurs each year as snow and sea ice retreat from their seasonal maxima, which is strongly correlated with future SAF across an ensemble of climate models. The newly released CMIP6 ensemble offers the chance to test prior constraints through out-of-sample verification, an important examination of EC robustness. Here, we show that the SAFsnow EC is equally strong in CMIP6 as it was in past generations, while the SAFice EC is also shown to exist in CMIP6, but with different, slightly weaker characteristics. We find that the CMIP6 mean NH SAF exhibits a global feedback of 0.25 ± 0.05 W m−2 K−1, or ~61% of the total global albedo feedback, largely in line with prior generations despite its increased climate sensitivity. The NH SAF can be broken down into similar contributions from snow and sea ice over the twenty-first century in CMIP6. Crucially, intermodel variability in seasonal SAFsnow and SAFice is largely unchanged from CMIP5 because of poor outlier simulations of snow cover, surface albedo, and sea ice thickness. These outliers act to mask the noted improvement from many models when it comes to SAFice, and to a lesser extent SAFsnow.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0703.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chad W. Thackeray, cwthackeray@ucla.edu

Abstract

An emergent constraint (EC) is a popular model evaluation technique, which offers the potential to reduce intermodel variability in projections of climate change. Two examples have previously been laid out for future surface albedo feedbacks (SAF) stemming from loss of Northern Hemisphere (NH) snow cover (SAFsnow) and sea ice (SAFice). These processes also have a modern-day analog that occurs each year as snow and sea ice retreat from their seasonal maxima, which is strongly correlated with future SAF across an ensemble of climate models. The newly released CMIP6 ensemble offers the chance to test prior constraints through out-of-sample verification, an important examination of EC robustness. Here, we show that the SAFsnow EC is equally strong in CMIP6 as it was in past generations, while the SAFice EC is also shown to exist in CMIP6, but with different, slightly weaker characteristics. We find that the CMIP6 mean NH SAF exhibits a global feedback of 0.25 ± 0.05 W m−2 K−1, or ~61% of the total global albedo feedback, largely in line with prior generations despite its increased climate sensitivity. The NH SAF can be broken down into similar contributions from snow and sea ice over the twenty-first century in CMIP6. Crucially, intermodel variability in seasonal SAFsnow and SAFice is largely unchanged from CMIP5 because of poor outlier simulations of snow cover, surface albedo, and sea ice thickness. These outliers act to mask the noted improvement from many models when it comes to SAFice, and to a lesser extent SAFsnow.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0703.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chad W. Thackeray, cwthackeray@ucla.edu
Save