• Anderson, G. P., and et al. , 2007: Using the MODTRAN5 radiative transfer algorithm with NASA satellite data: AIRS and SORCE. Proc. SPIE, 6565, 65651O, https://doi.org/10.1117/12.721184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergstrom, R. W., P. Pilewskie, B. Schmid, and P. B. Russell, 2003: Estimates of the spectral aerosol single scattering albedo and aerosol radiative effects during SAFARI 2000. J. Geophys. Res., 108, 8474, https://doi.org/10.1029/2002JD002435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., G. J. van Oldenborgh, S. S. Drijfhout, B. Wouters, and C. A. Katsman, 2013: Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci., 6, 376379, https://doi.org/10.1038/ngeo1767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., G. J. van Oldenborgh, and C. A. Katsman, 2015: The effect of increased fresh water from Antarctic ice shelves on future trends in Antarctic sea ice. Ann. Glaciol., 56, 120126, https://doi.org/10.3189/2015AoG69A001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., and L. M. Polvani, 2012: Antarctic climate response to stratospheric ozone depletion in a fine resolution ocean climate model. Geophys. Res. Lett., 39, L20705, https://doi.org/10.1029/2012GL053393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandt, R. E., S. G. Warren, A. P. Worby, and T. C. Grenfell, 2005: Surface albedo of the Antarctic sea ice zone. J. Climate, 18, 36063622, https://doi.org/10.1175/JCLI3489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., and B. Light, 2007: A delta-Eddington multiple scattering parameterization for solar radiation in the sea ice component of the Community Climate System Model. NCAR Tech. Note NCAR/TN-472+STR, 100 pp., https://doi.org/10.5065/D6B27S71.

    • Crossref
    • Export Citation
  • Carlisle, C., R. Wedge, D. Wu, H. Stello, and R. Robinson, 2015: Total and Spectral Solar Irradiance Sensor (TSIS) project overview. 7 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150023359.pdf.

  • Chen, H., H. Ma, X. Li, and S. Sun, 2015: Solar influences on spatial patterns of Eurasian winter temperature and atmospheric general circulation anomalies. J. Geophys. Res. Atmos., 120, 86428657, https://doi.org/10.1002/2015JD023415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coddington, O., J. L. Lean, P. Pilewskie, M. Snow, and D. Lindholm, 2016: A solar irradiance climate data record. Bull. Amer. Meteor. Soc., 97, 12651282, https://doi.org/10.1175/BAMS-D-14-00265.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J. A., J. L. Schramm, D. K. Perovich, and J. O. Pinto, 2001: Applications of SHEBA/FIRE data to evaluation of snow/ice albedo parameterizations. J. Geophys. Res., 106, 15 34515 355, https://doi.org/10.1029/2000JD900311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and et al. , 2020: The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeLand, M. T., and R. P. Cebula, 2008: Creation of a composite solar ultraviolet irradiance data set. J. Geophys. Res., 113, A11103, https://doi.org/10.1029/2008JA013401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeLand, M. T., and R. P. Cebula, 2012: Solar UV variations during the decline of Cycle 23. J. Atmos. Sol.-Terr. Phys., 77, 225234, https://doi.org/10.1016/j.jastp.2012.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ermolli, I., and et al. , 2013: Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys., 13, 39453977, https://doi.org/10.5194/acp-13-3945-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esper, J., and et al. , 2012: Orbital forcing of tree-ring data. Nat. Climate Change, 2, 862866, https://doi.org/10.1038/nclimate1589.

  • Flanner, M. G., and C. S. Zender, 2005: Snowpack radiative heating: Influence on Tibetan Plateau climate. Geophys. Res. Lett., 32, L06501, https://doi.org/10.1029/2004GL022076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch, 2007: Present day climate forcing and response from black carbon in snow. J. Geophys. Res., 112, D11202, https://doi.org/10.1029/2006JD008003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fröhlich, C., 2003: Long term behaviour of space radiometers. Metrologia, 40, S60S65, https://doi.org/10.1088/0026-1394/40/1/314.

  • Graversen, R. G., P. G. Langen, and T. Mauritsen, 2014: Arctic amplification in CCSM4: Contributions from the lapse rate and surface albedo feedbacks. J. Climate, 27, 44334450, https://doi.org/10.1175/JCLI-D-13-00551.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, L. J., and et al. , 2010: Solar influences on climate. Rev. Geophys., 48, RG4001, https://doi.org/10.1029/2009RG000282.

  • Grenfell, T. C., S. G. Warren, and P. C. Mullen, 1994: Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths. J. Geophys. Res., 99, 18 66918 684, https://doi.org/10.1029/94JD01484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harder, J. W., S. Beìland, and M. Snow, 2019: SORCE-based solar spectral irradiance (SSI) record for input into chemistry-climate studies. Earth Space Sci., 6, 24872507, https://doi.org/10.1029/2019EA000737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hickey, J. R., L. L. Stowe, H. Jacobowitz, P. Pellegrino, R. H. Maschhoff, F. House, and T. H. Vonder Haar, 1980: Initial solar irradiance determinations from Nimbus 7 cavity radiometer measurements. Science, 208, 281283, https://doi.org/10.1126/science.208.4441.281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. Elliott, 2015: CICE: The Los Alamos Sea Ice Model documentation and software user’s manual version 5.1. Doc. LA-CC-06–012, 116 pp., https://github.com/CICE-Consortium/CICE-svn-trunk/blob/master/cicedoc/cicedoc.pdf.

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imbers, J., A. Lopez, C. Huntingford, and M. R. Allen, 2013: Testing the robustness of the anthropogenic climate change detection statements using different empirical models. J. Geophys. Res. Atmos., 118, 31923199, https://doi.org/10.1002/jgrd.50296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ineson, S., A. A. Scaife, J. R. Knight, J. C. Manners, N. J. Dunstone, L. J. Gray, and D. H. Joanna, 2011: Solar forcing of winter climate variability in the Northern Hemisphere. Nat. Geosci., 4, 753757, https://doi.org/10.1038/ngeo1282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, C., B. Wang, J. Liu, N. Liang, and Y. Mi, 2019: Decadal variability of northern Asian winter monsoon shaped by the 11-year solar cycle. Climate Dyn., 53, 65596568, https://doi.org/10.1007/s00382-019-04945-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Z., K. Stamnes, W. F. Weeks, and S.-C. Tsay, 1994: The effect of sea ice on the solar energy budget in the atmosphere–sea ice–ocean system: A model study. J. Geophys. Res., 99, 25 28125 294, https://doi.org/10.1029/94JC02426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joly, S., S. Senneville, D. Caya, and F. J. Saucier, 2011: Sensitivity of Hudson Bay Sea ice and ocean climate to atmospheric temperature forcing. Climate Dyn., 36, 18351849, https://doi.org/10.1007/s00382-009-0731-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jouzel, J., and et al. , 2007: Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317, 793796, https://doi.org/10.1126/science.1141038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kindel, B. C., P. Pilewskie, K. S. Schmidt, O. Coddington, and M. D. King, 2011: Solar spectral absorption by marine stratus clouds: Measurements and modeling. J. Geophys. Res., 116, D10203, https://doi.org/10.1029/2010JD015071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kopp, G., 2020: TSIS TIM level 3 total solar irradiance 24-hour means V03. Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 24 August 2020, https://doi.org/10.5067/TSIS/TIM/DATA306.

    • Crossref
    • Export Citation
  • Kopp, G., A. Fehlmann, W. Finsterle, D. Harber, K. Heuerman, and R. Willson, 2012: Total solar irradiance data record accuracy and consistency improvements. Metrologia, 49, S29S33, https://doi.org/10.1088/0026-1394/49/2/S29.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, J. L., 2010: Cycles and trends in solar irradiance and climate. Wiley Interdiscip. Rev.: Climate Change, 1, 111122, https://doi.org/10.1002/wcc.18.

    • Search Google Scholar
    • Export Citation
  • Lean, J. L., and D. H. Rind, 2008: How natural and anthropogenic influences alter global and regional surface temperatures 1889 to 2006. Geophys. Res. Lett., 35, L18701, https://doi.org/10.1029/2008GL034864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, J. L., J. Beer, and J. Bradley, 1995: Reconstruction of solar irradiance since 1610: Implications for climate change. Geophys. Res. Lett., 22, 31953198, https://doi.org/10.1029/95GL03093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Light, B., T. C. Grenfell, and D. K. Perovich, 2008: Transmission and absorption of solar radiation by Arctic sea ice during the melt season. J. Geophys. Res., 113, C03023, https://doi.org/10.1029/2006JC003977.

    • Search Google Scholar
    • Export Citation
  • Lockwood, M., 2012: Solar influence on global and regional climates. Surv. Geophys., 33, 503534, https://doi.org/10.1007/s10712-012-9181-3.

  • Matthes, K., and et al. , 2017: Solar forcing for CMIP6 (v3.2). Geosci. Model Dev., 10, 22472302, https://doi.org/10.5194/gmd-10-2247-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauceri, S., E. Richard, P. Pilewskie, D. Harber, O. Coddington, S. Béland, M. Chambliss, and S. Carson, 2020: Degradation correction of TSIS SIM. Sol. Phys., 295, 152, https://doi.org/10.1007/s11207-020-01707-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, G. Branstator, and H. van Loon, 2008: A coupled air–sea response mechanism to solar forcing in the Pacific region. J. Climate, 21, 28832897, https://doi.org/10.1175/2007JCLI1776.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Misios, S., L. J. Gray, M. F. Knudsen, C. Karoff, H. Schmidt, and J. D. Haigh, 2019: Slowdown of the Walker circulation at solar cycle maximum. Proc. Natl. Acad. Sci. USA, 116, 71867191, https://doi.org/10.1073/pnas.1815060116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moritz, R. E., C. M. Bitz, and E. J. Steig, 2002: Dynamics of recent climate change in the Arctic. Science, 297, 14971502, https://doi.org/10.1126/science.1076522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myhre, G., and et al. , 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 675–688.

  • Pellichero, V., J.-B. Sallée, S. Schmidtko, F. Roquet, and J.-B. Charrassin, 2017: The ocean mixed layer under Southern Ocean sea-ice: Seasonal cycle and forcing. J. Geophys. Res. Oceans, 122, 16081633, https://doi.org/10.1002/2016JC011970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pilewskie, P., G. Kopp, E. Richard, O. Coddington, T. Sparn, and T. Woods, 2018: TSIS-1 and continuity of the total and spectral solar irradiance climate data record. Proc. 20th EGU General Assembly, Vienna, Austria, European Geosciences Union, 5527, https://ui.adsabs.harvard.edu/abs/2018EGUGA.20.5527P/abstract.

  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, https://doi.org/10.1038/ngeo2071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richard, E., 2019: TSIS SIM level 3 solar spectral irradiance 24-hour means V04 (TSIS_SSI_L3_24HR) at GES DISC, accessed 6 April 2020, https://catalog.data.gov/dataset/tsis-sim-level-3-solar-spectral-irradiance-24-hour-means-v04-tsis-ssi-l3-24hr-at-ges-disc.

  • Richard, E., and et al. , 2011: Future long-term measurements of solar spectral irradiance by the TSIS spectral irradiance monitor: Improvements in measurement accuracy and stability. Proc. 11th Int. Conf. on New Developments and Applications in Optical Radiometry, Maui, Hawaii, INV004, 5–6, http://newrad2011.aalto.fi/attachments/File/NewRAD2011_AbstractCollection_20110704.pdf.

  • Richard, E., D. Harber, O. Coddington, G. Drake, J. Rutkowski, M. Triplett, P. Pilewskie, and T. Woods, 2020: SI-traceable spectral irradiance radiometric characterization and absolute calibration of the TSIS-1 Spectral Irradiance Monitor (SIM). Remote Sens., 12, 18181844, https://doi.org/10.3390/rs12111818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rottman, G., J. Harder, J. Fontenla, T. N. Woods, O. R. White, and G. Lawrence, 2005: The Spectral Irradiance Monitor (SIM): Early observations. Sol. Phys., 230, 205224, https://doi.org/10.1007/s11207-005-1530-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, S., and P. Pilewskie, 2012: Airborne measurements of spectral shortwave radiation in cloud and aerosol remote sensing and energy budget studies. Light Scattering Reviews, Vol. 6, A. Kokhanovsky, Ed., Springer, 239–288, https://doi.org/10.1007/978-3-642-15531-4_6.

    • Crossref
    • Export Citation
  • Seppälä, A., K. Matthes, C. E. Randall, and I. A. Mironova, 2014: What is the solar influence on climate? Overview of activities during CAWSES-II. Prog. Earth Planet. Sci., 1, 24, https://doi.org/10.1186/s40645-014-0024-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X., and G. Lohmann, 2017: Sensitivity of open-water ice growth and ice concentration evolution in a coupled atmosphere–ocean–sea ice model. Dyn. Atmos. Oceans, 79, 1030, https://doi.org/10.1016/j.dynatmoce.2017.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solanki, S. K., N. A. Krivova, and J. D. Haigh, 2013: Solar irradiance variability and climate. Annu. Rev. Astron. Astrophys., 51, 311351, https://doi.org/10.1146/annurev-astro-082812-141007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., and D. Notz, 2015: Insights on past and future sea-ice evolution from combining observations and models. Global Planet. Change, 135, 119132, https://doi.org/10.1016/j.gloplacha.2015.10.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swingedouw, D., L. Terray, C. Cassou, A. Voldoire, D. Salas-Mélia, and J. Servonnat, 2011: Natural forcing of climate during the last millennium: Fingerprint of solar variability. Climate Dyn., 36, 13491364, https://doi.org/10.1007/s00382-010-0803-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., M. Cai, A. Hu, J. Meehl, W. Washington, and G. J. Zhang, 2013: A decomposition of feedback contributions to polar warming amplification. J. Climate, 26, 70237043, https://doi.org/10.1175/JCLI-D-12-00696.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y.-M., J. Lean, and N. Sheeley, 2005: Modeling the sun’s magnetic field and irradiance since 1713. Astrophys. J., 625, 522538, https://doi.org/10.1086/429689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, S. G., 2019: Optical properties of ice and snow. Philos. Trans. Roy. Soc., 377A, 20180161, https://doi.org/10.1098/rsta.2018.0161.

  • Warren, S. G., I. G. Rigor, N. Untersteiner, V. F. Radionov, N. N. Bryazgin, Y. I. Aleksandrov, and R. Colony, 1999: Snow depth on Arctic sea ice. J. Climate, 12, 18141829, https://doi.org/10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., M. Lockwood, G. Masato, C. Bell, and L. Gray, 2010: Enhanced signature of solar variability in Eurasian winter climate. Geophys. Res. Lett., 37, L20805, https://doi.org/10.1029/2010GL044601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., Y. Y. Hu, J. P. Liu, Y. Huang, F. Xie, and J. T. Lin, 2020: Stratospheric ozone-induced cloud radiative effects on Antarctic sea ice. Adv. Atmos. Sci., 37, 505514, https://doi.org/10.1007/s00376-019-8251-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 432 432 432
Full Text Views 43 43 43
PDF Downloads 62 62 62

Direct Influence of Solar Spectral Irradiance on the High-Latitude Surface Climate

View More View Less
  • 1 Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan
  • | 2 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Not only total solar irradiance (TSI) but also spectral solar irradiance (SSI) matter for our climate. Different surfaces can have different reflectivity for the visible (VIS) and near-infrared (NIR). The recent NASA Total and Spectral Solar Irradiance Sensor (TSIS-1) mission has provided more accurate SSI observations than before. The TSI observed by TSIS-1 differs from the counterpart used by climate models by no more than 1 W m−2. However, the SSI difference in a given VIS (e.g., 0.44–0.63 μm) and NIR (e.g., 0.78–1.24 μm) band can be as large as 4 W m−2 with opposite signs. Using the NCAR CESM2, we study to what extent such different VIS and NIR SSI partitions can affect the simulated climate. Two sets of simulations with identical TSI are carried out, one with SSI partitioning as observed by the TSIS-1 mission and the other with what has been used in the current climate models. Due to different VIS-NIR spectral reflectance contrasts between icy (or snowy) surfaces and open water, the simulation with more SSI in the VIS has less solar absorption by the high-latitude surfaces, ending up with colder polar surface temperature and larger sea ice coverage. The difference is more prominent over the Antarctic than over the Arctic. Our results suggest that, even for the identical TSI, the surface albedo feedback can be triggered by different SSI partition between the VIS and NIR. The results underscore the importance of continuously monitoring SSI and the use of correct SSI in climate simulations.

Corresponding author: Xianwen Jing, xianwen@umich.edu

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Abstract

Not only total solar irradiance (TSI) but also spectral solar irradiance (SSI) matter for our climate. Different surfaces can have different reflectivity for the visible (VIS) and near-infrared (NIR). The recent NASA Total and Spectral Solar Irradiance Sensor (TSIS-1) mission has provided more accurate SSI observations than before. The TSI observed by TSIS-1 differs from the counterpart used by climate models by no more than 1 W m−2. However, the SSI difference in a given VIS (e.g., 0.44–0.63 μm) and NIR (e.g., 0.78–1.24 μm) band can be as large as 4 W m−2 with opposite signs. Using the NCAR CESM2, we study to what extent such different VIS and NIR SSI partitions can affect the simulated climate. Two sets of simulations with identical TSI are carried out, one with SSI partitioning as observed by the TSIS-1 mission and the other with what has been used in the current climate models. Due to different VIS-NIR spectral reflectance contrasts between icy (or snowy) surfaces and open water, the simulation with more SSI in the VIS has less solar absorption by the high-latitude surfaces, ending up with colder polar surface temperature and larger sea ice coverage. The difference is more prominent over the Antarctic than over the Arctic. Our results suggest that, even for the identical TSI, the surface albedo feedback can be triggered by different SSI partition between the VIS and NIR. The results underscore the importance of continuously monitoring SSI and the use of correct SSI in climate simulations.

Corresponding author: Xianwen Jing, xianwen@umich.edu

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Save