• Allan, R., and T. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Climate, 19, 58165842, https://doi.org/10.1175/JCLI3937.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, Q., J. Yang and Y. Liu, 2010: Roles of anomalous Tibetan Plateau warming on the severe 2008 winter storm in central-southern China. Mon. Wea. Rev., 138, 23752384, https://doi.org/10.1175/2009MWR2950.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, Y., and Q. You, 2019: How do westerly jet streams regulate the winter snow depth over the Tibetan Plateau? Climate. Dyn., 53, 353370, https://doi.org/10.1007/S00382-018-4589-1.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2011: The basic ingredients of the North Atlantic storm track. Part II: Sea surface temperatures. J. Atmos. Sci., 68, 17841805, https://doi.org/10.1175/2011JAS3674.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., R. Zhang, S. C. Pryor, X. Li, and H. Wang, 2020: Influence of wintertime surface sensible heat flux variability over the central and eastern Tibetan Plateau on the East Asian winter monsoon. Climate Dyn., 54, 45894603, https://doi.org/10.1007/s00382-020-05246-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., J. Foster, M. Barlow, K. Saito, and J. Jones, 2010: Winter 2009–2010: A case study of an extreme Arctic Oscillation event. Geophys. Res. Lett., 37, L17707, https://doi.org/10.1029/2010GL044256.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., M. W. Williams, X. Fu, G. Wang, and T. Gong, 2012: Spatiotemporal distribution of snow in eastern Tibet and the response to climate change. Remote Sens. Environ., 121, 19, https://doi.org/10.1016/j.rse.2012.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., H. Wang, and S. Li, 2013: Influences of the Atlantic Ocean on the summer precipitation of the southeastern Tibetan Plateau. J. Geophys. Res. Atmos., 118, 35343544, https://doi.org/10.1002/jgrd.50290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, D., E. Yu, and H. Wang, 2016: Will the Tibetan Plateau warming depend on elevation in the future? J. Geophys. Res. Atmos., 121, 39693978, https://doi.org/10.1002/2016JD024871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., P. B. Rhines, and D. L. Worthen, 2011: Atmospheric blocking and Atlantic multidecadal ocean variability. Science, 334, 655659, https://doi.org/10.1126/science.1205683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, S., Y. Gao, T. Furevik, H. Wang, and F. Li, 2018: Teleconnection between sea ice in the Barents Sea in June and the Silk Road, Pacific–Japan and East Asian rainfall patterns in August. Adv. Atmos. Sci., 35, 5264, https://doi.org/10.1007/s00376-017-7029-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 15921612, https://doi.org/10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation—Climate Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35.

    • Crossref
    • Export Citation
  • Imtiaz, R., R. J. Miller, L. G. Russell, and M. Xu, 2009: Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the Tibetan Plateau during the twenty-first century. Climate Dyn., 34, 859872, https://doi.org/10.1007/S00382-009-0564-1.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2014: Climate Change 2014: Synthesis Report. Cambridge University Press, 151 pp.

  • Jones, P. D., T. Jónsson, and D. Wheeler, 1997: Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol., 17, 14331450, https://doi.org/10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, R., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841985, https://doi.org/10.1126/science.288.5473.1984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N. C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 27182743, https://doi.org/10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and M. J. Nath, 1991: Variability of the baroclinic and barotropic transient eddy forcing associated with monthly changes in the midlatitude storm tracks. J. Atmos. Sci., 48, 25892613, https://doi.org/10.1175/1520-0469(1991)048<2589:VOTBAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., R. Yu, T. Zhou, and B. Wang, 2005: Why is there an early spring cooling shift downstream of the Tibetan Plateau? J. Climate, 18, 46604668, https://doi.org/10.1175/JCLI3568.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., R. Yu, and T. Zhou, 2008: Teleconnection between NAO and climate downstream of the Tibetan Plateau. J. Climate, 21, 46804690, https://doi.org/10.1175/2008JCLI2053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., S. Yang, Z. Wang, X. Zhu, and H. Tang 2010: Evidence of warming and wetting climate over the Qinghai-Tibet Plateau. Arct. Antarct. Alp. Res., 42, 449457, https://doi.org/10.1657/1938-4246-42.4.449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and B. Chen, 2000: Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol., 20, 17291742, https://doi.org/10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and Z. Yin, 2001: Spatial and temporal variation of summer precipitation over the eastern Tibetan Plateau and the North Atlantic Oscillation. J. Climate, 14, 28962909, https://doi.org/10.1175/1520-0442(2001)014<2896:SATVOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, J. M., J. M. Schaefer, S. Rupper, and A. Corley, 2019: Acceleration of ice loss across the Himalayas over the past 40 years. Sci. Adv., 5, eaav7266, https://doi.org/10.1126/sciadv.aav7266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Msadek, R., C. Frankignoul, and L. Z. X. Li, 2010: Mechanisms of the atmospheric response to North Atlantic multidecadal variability: A model study. Climate Dyn., 36, 12551276, https://doi.org/10.1007/s00382-010-0958-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsolini, Y. J., L. Zhang, and H. W. Dieter, 2015: Extreme precipitation events over North China in August 2010 and their link to eastward-propagating wave-trains across Eurasia: Observations and monthly forecasting. Quart. J. Roy. Meteor. Soc., 141, 30973105, https://doi.org/10.1002/qj.2594.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. J., 2011: Winter 2009/2010 temperatures and a record-breaking North Atlantic Oscillation index. Weather, 66, 1921, https://doi.org/10.1002/WEA.660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palazzi, E., L. Filippi, and J. V. Hardenberg, 2017: Insights into elevation-dependent warming in the Tibetan Plateau–Himalayas from CMIP5 model simulations. Climate Dyn., 48, 39914008, https://doi.org/10.1007/s00382-016-3316-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, L., and F. Jin, 2005: Seasonality of synoptic eddy feedback and the AO/NAO. Geophys. Res. Lett., 32, L21708, https://doi.org/10.1029/2005GL024133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., and G. Magnusdottir, 2014: Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic Ocean. Environ. Res. Lett., 9, 034018, https://doi.org/10.1088/1748-9326/9/3/034018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepin, N., and et al. , 2015: Elevation-dependent warming in mountain regions of the world. Nat. Climate Change, 5, 424430, https://doi.org/10.1038/nclimate2563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and et al. , 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and G. Carmichael, 2008: Global and regional climate changes due to black carbon. Nat. Geosci., 1, 221227, https://doi.org/10.1038/ngeo156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, H., F. Jin, and L. Gao, 2012: Anatomy of synoptic eddy–NAO interaction through eddy structure decomposition. J. Atmos. Sci., 69, 21712191, https://doi.org/10.1175/JAS-D-11-069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruprich-Robert, Y., R. Msadek, F. Castruccio, S. Yeager, T. Delworth, and G. Danabasoglu, 2017: Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. J. Climate, 30, 27852810, https://doi.org/10.1175/JCLI-D-16-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, C., W. C. Wang, and Z. Gang, 2011: Decadal variability in snow cover over the Tibetan Plateau during the last two centuries. Geophys. Res. Lett., 38, L10703, https://doi.org/10.1029/2011GL047288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., D. Clara, K. A. McKinnon, and E. A. Barnes, 2018: Modeled and observed multidecadal variability in the North Atlantic jet stream and its connection to sea surface temperatures. J. Climate, 31, 83138338, https://doi.org/10.1175/JCLI-D-18-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., S. Yeager, K. A. McKinnon, and C. Deser, 2019: Decadal predictability of late winter precipitation in western Europe through an ocean-jet stream connection. Nat. Geosci., 12, 613619, https://doi.org/10.1038/s41561-019-0391-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, H., J. Xin, Y. Ma, Z. Liu, and T. Wen, 2018: Effects of transport on aerosols over the eastern slope of the Tibetan Plateau: Synergistic contribution of Southeast Asia and the Sichuan basin. Atmos. Oceanic Sci. Lett., 11, 425431, https://doi.org/10.1080/16742834.2018.1512832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22, 14691481, https://doi.org/10.1175/2008JCLI2561.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, E. K., 1986: An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen–Palm flux diagnostics. J. Atmos. Sci., 43, 20702087, https://doi.org/10.1175/1520-0469(1986)043<2070:AAOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 745 pp.

    • Crossref
    • Export Citation
  • Wang, B., Q. Bao, B. Hoskins, G. Wu, and Y. Liu, 2008: Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett., 35, L14702, https://doi.org/10.1029/2008GL034330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., 2004: Asian jet waveguide and a downstream extension of the North Atlantic Oscillation. J. Climate, 17, 46744691, https://doi.org/10.1175/JCLI-3228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, T., and Z. Qian, 2003: The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: An observational investigation. J. Climate, 16, 20382051, https://doi.org/10.1175/1520-0442(2003)016<2038:TRBTTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xin, X., T. Zhou, and R. Yu, 2010: Increased Tibetan Plateau snow depth: An indicator of the connection between enhanced winter NAO and late-spring tropospheric cooling over East Asia. Adv. Atmos. Sci., 27, 788794, https://doi.org/10.1007/s00376-009-9071-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., C. Lu, X. Shi and S. Gao, 2008: World water tower: An atmospheric perspective. Geophys. Res. Lett., 35, 525530, https://doi.org/10.1029/2008GL035867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., T. Zhao, C. Lu, and Y. Guo, 2014: An important mechanism sustaining the atmospheric “water tower” over the Tibetan Plateau. Atmos. Chem. Phys., 14, 11 28711 295, https://doi.org/10.5194/acp-14-11287-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Y. F., X. C. Wang, and Y. M. Liu, 2018: Cloud vertical structures associated with precipitation magnitudes over the Tibetan Plateau and its neighboring regions. Atmos. Oceanic Sci. Lett., 11, 4453, https://doi.org/10.1080/16742834.2018.1395680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, T., L. Thompson, and W. Yang, 2012: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature, 2, 663667, https://doi.org/10.1038/nclimate1580.

    • Search Google Scholar
    • Export Citation
  • You, Q., S. Kang, G. Ren, K. Fraedrich, N. Pepin, Y. Yan, and L. Ma, 2011: Observed changes in snow depth and number of snow days in the eastern and central Tibetan Plateau. Climate Res., 46, 171183, https://doi.org/10.3354/cr00985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, H., E. Luedeling, J. Xu, and F. S. Chapin, 2010: Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA, 107, 22 15122 156, https://doi.org/10.1073/pnas.1012490107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., R. Sutton, G. Danabasoglu, Y. Kwon, R. Marsh, S. G. Yeager, D. E. Amrhein, and C. M. Little, 2019: A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev. Geophys., 57, 316375, https://doi.org/10.1029/2019RG000644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., X. Mei, X. Geng, A. G. Turner, and F. Jin, 2018: A nonstationary ENSO–NAO relationship due to AMO modulation. J. Climate, 32, 3343, https://doi.org/10.1175/JCLI-D-18-0365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., T. Li, and B. Wang, 2004: Decadal change of the spring snow depth over the Tibetan Plateau: The associated circulation and influence on the East Asian summer monsoon. J. Climate, 17, 27802793, https://doi.org/10.1175/1520-0442(2004)017<2780:DCOTSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., Y. Ding, and H. Xu, 2008: Decadal relationship between atmospheric heat source and winter-spring snow cover over the Tibetan Plateau and rainfall in East China. Acta Meteor. Sin., 22, 303316.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 163 163 163
Full Text Views 47 47 47
PDF Downloads 64 64 64

The Atlantic Multidecadal Variability Phase Dependence of Teleconnection between the North Atlantic Oscillation in February and the Tibetan Plateau in March

View More View Less
  • 1 Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
  • | 2 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
  • | 3 Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway
  • | 4 Climate Change Research Center, Chinese Academy of Sciences, Beijing, China
  • | 5 Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 6 NILU-Norwegian Institute for Air Research, Kjeller, Norway
© Get Permissions
Restricted access

Abstract

The Tibetan Plateau (TP), referred to as the “Asian water tower,” contains one of the largest land ice masses on Earth. The local glacier shrinkage and frozen-water storage are strongly affected by variations in surface air temperature over the TP (TPSAT), especially in springtime. This study reveals that the relationship between the February North Atlantic Oscillation (NAO) and March TPSAT is unstable with time and regulated by the phase of the Atlantic multidecadal variability (AMV). The significant out-of-phase connection occurs only during the warm phase of AMV (AMV+). The results show that during the AMV+, the negative phase of the NAO persists from February to March, and is accompanied by a quasi-stationary Rossby wave train trapped along a northward-shifted subtropical westerly jet stream across Eurasia, inducing an anomalous adiabatic descent that warms the TP. However, during the cold phase of the AMV, the negative NAO cannot persist into March. The Rossby wave train propagates along the well-separated polar and subtropical westerly jets, and the NAO–TPSAT connection is broken. Further investigation suggests that the enhanced synoptic eddy and low-frequency flow (SELF) interaction over the North Atlantic in February and March during the AMV+, caused by the southward-shifted storm track, helps maintain the NAO pattern via positive eddy feedback. This study provides a new detailed perspective on the decadal variability of the North Atlantic–TP connection in late winter to early spring.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0157.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jingyi Li, llljy1024@163.com

Abstract

The Tibetan Plateau (TP), referred to as the “Asian water tower,” contains one of the largest land ice masses on Earth. The local glacier shrinkage and frozen-water storage are strongly affected by variations in surface air temperature over the TP (TPSAT), especially in springtime. This study reveals that the relationship between the February North Atlantic Oscillation (NAO) and March TPSAT is unstable with time and regulated by the phase of the Atlantic multidecadal variability (AMV). The significant out-of-phase connection occurs only during the warm phase of AMV (AMV+). The results show that during the AMV+, the negative phase of the NAO persists from February to March, and is accompanied by a quasi-stationary Rossby wave train trapped along a northward-shifted subtropical westerly jet stream across Eurasia, inducing an anomalous adiabatic descent that warms the TP. However, during the cold phase of the AMV, the negative NAO cannot persist into March. The Rossby wave train propagates along the well-separated polar and subtropical westerly jets, and the NAO–TPSAT connection is broken. Further investigation suggests that the enhanced synoptic eddy and low-frequency flow (SELF) interaction over the North Atlantic in February and March during the AMV+, caused by the southward-shifted storm track, helps maintain the NAO pattern via positive eddy feedback. This study provides a new detailed perspective on the decadal variability of the North Atlantic–TP connection in late winter to early spring.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0157.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jingyi Li, llljy1024@163.com

Supplementary Materials

    • Supplemental Materials (PDF 520.18 KB)
Save