• al Fahad, A., N. J. Burls, and Z. Strasberg, 2020: How will Southern Hemisphere subtropical anticyclones respond to global warming? Mechanisms and seasonality in CMIP5 and CMIP6 model projections. Climate Dyn., 55, 703718, https://doi.org/10.1007/s00382-020-05290-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Algarra, I., J. Eiras-Barca, R. Nieto, and L. Gimeno, 2019: Global climatology of nocturnal low-level jets and associated moisture sources and sinks. Atmos. Res., 229, 3959, https://doi.org/10.1016/j.atmosres.2019.06.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 228232, https://doi.org/10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Bony, S., G. Bellon, D. Klocke, S. Sherwood, S. Fermepin, and S. Denvil, 2013: Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci., 6, 447451, https://doi.org/10.1038/ngeo1799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and M. Khairoutdinov, 2005: An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci., 62, 42734292, https://doi.org/10.1175/JAS3614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2013: Land–ocean warming contrast over a wide range of climates: Convective quasi-equilibrium theory and idealized simulations. J. Climate, 26, 40004016, https://doi.org/10.1175/JCLI-D-12-00262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2015: The response of precipitation minus evapotranspiration to climate warming: Why the “wet-get-wetter, dry-get-drier” scaling does not hold over land. J. Climate, 28, 80788092, https://doi.org/10.1175/JCLI-D-15-0369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caballero, R., and J. Hanley, 2012: Midlatitude eddies, storm-track diffusivity, and poleward moisture transport in warm climates. J. Atmos. Sci., 69, 32373250, https://doi.org/10.1175/JAS-D-12-035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, https://doi.org/10.1029/2012JD018578.

    • Search Google Scholar
    • Export Citation
  • Chen, G., J. Norris, J. D. Neelin, J. Lu, L. R. Leung, and K. Sakaguchi, 2019: Thermodynamic and dynamic mechanisms for hydrological cycle intensification over the full probability distribution of precipitation events. J. Atmos. Sci., 76, 497516, https://doi.org/10.1175/JAS-D-18-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, X., C. Liu, F. Xie, J. Lu, L. S. Chiu, G. Tintera, and B. Chen, 2019: Precipitation characteristic changes due to global warming in a high-resolution (16 km) ECMWF simulation. Quart. J. Roy. Meteor. Soc., 145, 303317, https://doi.org/10.1002/qj.3432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., J. Lu, L. R. Leung, Q. Yang, S. Hagos, and Y. Qian, 2015: Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America. Geophys. Res. Lett., 42, 71797186, https://doi.org/10.1002/2015GL065435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S. M., L. R. Leung, J.-H. Yoon, J. Lu, and Y. Gao, 2016: A projection of changes in landfalling atmospheric river frequency and extreme precipitation over western North America from the large ensemble CESM simulations. Geophys. Res. Lett., 43, 13571363, https://doi.org/10.1002/2015GL067392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., B. Wu, L. Zou, and T. Zhou, 2017: Responses of the summertime subtropical anticyclones to global warming. J. Climate, 30, 64656479, https://doi.org/10.1175/JCLI-D-16-0529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J., and B. J. Soden, 2017: A re-examination of the projected subtropical precipitation decline. Nat. Climate Change, 7, 5357, https://doi.org/10.1038/nclimate3157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441475, https://doi.org/10.1146/annurev.energy.25.1.441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C. S. Y., and N. Nakamura, 2016: Local finite-amplitude wave activity as a diagnostic of anomalous weather events. J. Atmos. Sci., 73, 211229, https://doi.org/10.1175/JAS-D-15-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C. S. Y., and N. Nakamura, 2017: Local wave activity budgets of the wintertime Northern Hemisphere: Implication for the Pacific and Atlantic storm tracks. Geophys. Res. Lett., 44, 56735682, https://doi.org/10.1002/2017GL073760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., D. Chen, and J. Ying, 2017: Weakening of the tropical atmospheric circulation response to local sea surface temperature anomalies under global warming. J. Climate, 30, 81498158, https://doi.org/10.1175/JCLI-D-17-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joshi, M. M., J. M. Gregory, M. J. Webb, D. M. H. Sexton, and T. C. Johns, 2008: Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Climate Dyn., 30, 455465, https://doi.org/10.1007/s00382-007-0306-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., and J. Lu, 2012: Expansion of the Hadley cell under global warming: Winter versus summer. J. Climate, 25, 83878393, https://doi.org/10.1175/JCLI-D-12-00323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and et al. , 2014: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., and et al. , 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, https://doi.org/10.1038/ncomms5646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., X. Tan, T. Y. Gan, X. Chen, K. Lin, M. Lu, and Z. Liu, 2020: Global atmospheric moisture transport associated with precipitation extremes: Mechanisms and climate change impacts. Wiley Interdiscip. Rev.: Water, 7, e1412, https://doi.org/10.1002/wat2.1412.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and E. T. DeWeaver, 2007: The response of the extratropical hydrological cycle to global warming. J. Climate, 20, 34703484, https://doi.org/10.1175/JCLI4192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, https://doi.org/10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Lu, J., and et al. , 2014: The robust dynamical contribution to precipitation extremes in idealized warming simulations across model resolutions. Geophys. Res. Lett., 41, 29712978, https://doi.org/10.1002/2014GL059532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., and et al. , 2017: Examining the hydrological variations in an aquaplanet world using wave activity transformation. J. Climate, 30, 25592576, https://doi.org/10.1175/JCLI-D-16-0561.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., D. Xue, Y. Gao, G. Chen, L. R. Leung, and P. Staten, 2018: Enhanced hydrological extremes in the western United States under global warming through the lens of water vapor wave activity. npj Climate Atmos. Sci., 1, 7, https://doi.org/10.1038/s41612-018-0017-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menary, M. B., and R. A. Wood, 2018: An anatomy of the projected North Atlantic warming hole in CMIP5 models. Climate Dyn., 50, 30633080, https://doi.org/10.1007/s00382-017-3793-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, N., and A. Solomon, 2010: Finite-amplitude wave activity and mean flow adjustments in the atmospheric general circulation. Part I: Quasigeostrophic theory and analysis. J. Atmos. Sci., 67, 39673983, https://doi.org/10.1175/2010JAS3503.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and et al. , 2010: Long tails in deep columns of natural and anthropogenic tropospheric tracers. Geophys. Res. Lett., 37, L05804, https://doi.org/10.1029/2009GL041726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., B. Langenbrunner, J. E. Meyerson, A. Hall, and N. Berg, 2013: California winter precipitation change under global warming in the Coupled Model Intercomparison Project phase 5 ensemble. J. Climate, 26, 62386256, https://doi.org/10.1175/JCLI-D-12-00514.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2015: Precipitation extremes under climate change. Curr. Climate Change Rep., 1, 4959, https://doi.org/10.1007/s40641-015-0009-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14 77314 777, https://doi.org/10.1073/pnas.0907610106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and C. J. Muller, 2010: How closely do changes in surface and column water vapor follow Clausius–Clapeyron scaling in climate change simulations? Environ. Res. Lett., 5, 025207, https://doi.org/10.1088/1748-9326/5/2/025207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., J. Cattiaux, S. Vavrus, and G. Magnusdottir, 2017: Late twenty-first-century changes in the midlatitude atmospheric circulation in the CESM large ensemble. J. Climate, 30, 59435960, https://doi.org/10.1175/JCLI-D-16-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and E. P. Gerber, 2016: The rain is askew: Two idealized models relating vertical velocity and precipitation distributions in a warming world. J. Climate, 29, 64456462, https://doi.org/10.1175/JCLI-D-16-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., P. A. O’Gorman, and E. M. Fischer, 2017: Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Climate Change, 7, 423427, https://doi.org/10.1038/nclimate3287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polade, S. D., D. W. Pierce, D. R. Cayan, A. Gershunov, and M. D. Dettinger, 2014: The key role of dry days in changing regional climate and precipitation regimes. Sci. Rep., 4, 4364, https://doi.org/10.1038/srep04364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polade, S. D., A. Gershunov, D. R. Cayan, M. D. Dettinger, and D. W. Pierce, 2017: Precipitation in a warming world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions. Sci. Rep., 7, 10783, https://doi.org/10.1038/s41598-017-11285-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romanowsky, E., and et al. , 2019: The role of stratospheric ozone for Arctic–midlatitude linkages. Sci. Rep., 9, 7962, https://doi.org/10.1038/s41598-019-43823-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheff, J., and D. M. W. Frierson, 2012: Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys. Res. Lett., 39, L18704, https://doi.org/10.1029/2012GL052910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheff, J., and D. M. W. Frierson, 2014: Scaling potential evapotranspiration with greenhouse warming. J. Climate, 27, 15391558, https://doi.org/10.1175/JCLI-D-13-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and N. Henderson, 2013: Diagnostic computation of moisture budgets in the ERA-Interim reanalysis with reference to analysis of CMIP-archived atmospheric model data. J. Climate, 26, 78767901, https://doi.org/10.1175/JCLI-D-13-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., 2019: Mechanisms of future predicted changes in the zonal mean mid-latitude circulation. Curr. Climate Change Rep., 5, 345357, https://doi.org/10.1007/s40641-019-00145-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and et al. , 2016: Storm track processes and the opposing influences of climate change. Nat. Geosci., 9, 656664, https://doi.org/10.1038/ngeo2783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2014: Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci., 7, 703708, https://doi.org/10.1038/ngeo2253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, M. S., and P. A. O’Gorman, 2012: Upward shift of the atmospheric general circulation under global warming: Theory and simulations. J. Climate, 25, 82598276, https://doi.org/10.1175/JCLI-D-11-00699.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., L. R. Leung, J. Lu, and L. Dong, 2018: Seasonally dependent responses of subtropical highs and tropical rainfall to anthropogenic warming. Nat. Climate Change, 8, 787792, https://doi.org/10.1038/s41558-018-0244-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staten, P. W., K. M. Grise, S. M. Davis, K. Karnauskas, and N. Davis, 2019: Regional widening of tropical overturning: Forced change, natural variability, and recent trends. J. Geophys. Res. Atmos., 124, 61046119, https://doi.org/10.1029/2018JD030100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Y. Hu, 2010: Are climate-related changes to the character of global-mean precipitation predictable? Environ. Res. Lett., 5, 025209, https://doi.org/10.1088/1748-9326/5/2/025209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., and R. T. Pierrehumbert, 1997: Lower-tropospheric heat transport in the Pacific storm track. J. Atmos. Sci., 54, 15331543, https://doi.org/10.1175/1520-0469(1997)054<1533:LTHTIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamarin-Brodsky, T., and Y. Kaspi, 2017: Enhanced poleward propagation of storms under climate change. Nat. Geosci., 10, 908913, https://doi.org/10.1038/s41561-017-0001-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamarin-Brodsky, T., and O. Hadas, 2019: The asymmetry of vertical velocity in current and future climate. Geophys. Res. Lett., 46, 374382, https://doi.org/10.1029/2018GL080363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tandon, N. F., X. Zhang, and A. H. Sobel, 2018: Understanding the dynamics of future changes in extreme precipitation intensity. Geophys. Res. Lett., 45, 28702878, https://doi.org/10.1002/2017GL076361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thackeray, C. W., A. M. DeAngelis, A. Hall, D. L. Swain, and X. Qu, 2018: On the connection between global hydrologic sensitivity and regional wet extremes. Geophys. Res. Lett., 45, 11 34311 351, https://doi.org/10.1029/2018GL079698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change, 42, 327339, https://doi.org/10.1023/A:1005488920935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1995: Evaluation of the global atmospheric moisture budget as seen from analyses. J. Climate, 8, 22552272, https://doi.org/10.1175/1520-0442(1995)008<2255:EOTGAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. 1st ed. Cambridge University Press, 770 pp.

  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, https://doi.org/10.1175/JCLI4258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., H.-M. Kim, and E. K. M. Chang, 2017: Changes in Northern Hemisphere winter storm tracks under the background of Arctic amplification. J. Climate, 30, 37053724, https://doi.org/10.1175/JCLI-D-16-0650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, E., C. Jakob, and M. J. Reeder, 2019: Understanding the dynamic contribution to future changes in tropical precipitation from low-level convergence lines. Geophys. Res. Lett., 46, 21962203, https://doi.org/10.1029/2018GL080813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, R. C., M. P. Byrne, and T. Schneider, 2016: Thermodynamic and dynamic controls on changes in the zonally anomalous hydrological cycle. Geophys. Res. Lett., 43, 46404649, https://doi.org/10.1002/2016GL068418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, D., J. Lu, L. R. Leung, and Y. Zhang, 2018: Response of the hydrological cycle in Asian monsoon systems to global warming through the lens of water vapor wave activity analysis. Geophys. Res. Lett., 45, 11 90411 912, https://doi.org/10.1029/2018GL078998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yettella, V., and J. E. Kay, 2017: How will precipitation change in extratropical cyclones as the planet warms? Insights from a large initial condition climate model ensemble. Climate Dyn., 49, 17651781, https://doi.org/10.1007/s00382-016-3410-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 171 171 171
Full Text Views 51 51 51
PDF Downloads 63 63 63

How Moist and Dry Intrusions Control the Local Hydrologic Cycle in Present and Future Climates

View More View Less
  • 1 Indiana University Bloomington, Bloomington, Indiana
  • | 2 Pacific Northwest National Laboratory, Richland, Washington
© Get Permissions
Restricted access

Abstract

Models disagree on how much the hydrologic cycle could intensify under climate change. These changes are expected to scale with the Clausius–Clapeyron relation but may locally diverge due in part to the uncertain response of the general circulation, causing the hydrologic cycle to inherit this uncertainty. To identify how the circulation contributes, we link circulation changes to changes in the higher moments of the hydrologic cycle using the novel dynamical framework of the local hydrologic cycle, the portion of the hydrologic cycle driven by moist or dry intrusions. We expand this dynamical framework, developing a closed budget that diagnoses thermodynamic, advective, and overturning contributions to future hydrologic cycle changes. In analyzing these changes for the Community Earth System Model Large Ensemble, we show that overturning is the main dynamic contributor to the tropical and subtropical annual response, consistent with a weakening of this circulation. In the extratropics, we show that advective contributions, likely from storm track changes, dominate the response. We achieve a cleaner separation between dynamic and thermodynamic contributions through a semiempirical scaling, which reveals the robustness of the Clausius–Clapeyron scaling for the local hydrologic cycle. This scaling also demonstrates the slowing of the local hydrologic cycle and how changing subtropical dynamics asymmetrically impact wave breaking and suppress meridional moisture transport. We conclude that dynamic changes in the subtropics are predominantly responsible for the annual, dynamic response in the extratropics and thus a significant contributor to uncertainty in future projections.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0780.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Samuel Smith, samjsmit@iu.edu

Abstract

Models disagree on how much the hydrologic cycle could intensify under climate change. These changes are expected to scale with the Clausius–Clapeyron relation but may locally diverge due in part to the uncertain response of the general circulation, causing the hydrologic cycle to inherit this uncertainty. To identify how the circulation contributes, we link circulation changes to changes in the higher moments of the hydrologic cycle using the novel dynamical framework of the local hydrologic cycle, the portion of the hydrologic cycle driven by moist or dry intrusions. We expand this dynamical framework, developing a closed budget that diagnoses thermodynamic, advective, and overturning contributions to future hydrologic cycle changes. In analyzing these changes for the Community Earth System Model Large Ensemble, we show that overturning is the main dynamic contributor to the tropical and subtropical annual response, consistent with a weakening of this circulation. In the extratropics, we show that advective contributions, likely from storm track changes, dominate the response. We achieve a cleaner separation between dynamic and thermodynamic contributions through a semiempirical scaling, which reveals the robustness of the Clausius–Clapeyron scaling for the local hydrologic cycle. This scaling also demonstrates the slowing of the local hydrologic cycle and how changing subtropical dynamics asymmetrically impact wave breaking and suppress meridional moisture transport. We conclude that dynamic changes in the subtropics are predominantly responsible for the annual, dynamic response in the extratropics and thus a significant contributor to uncertainty in future projections.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0780.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Samuel Smith, samjsmit@iu.edu

Supplementary Materials

    • Supplemental Materials (PDF 3.35 MB)
Save