The Sensitivity of Persistent Geopotential Anomalies to the Climate of a Moist Channel Model

Gregory Tierney aNorth Carolina State University, Raleigh, North Carolina

Search for other papers by Gregory Tierney in
Current site
Google Scholar
PubMed
Close
,
Walter A. Robinson aNorth Carolina State University, Raleigh, North Carolina

Search for other papers by Walter A. Robinson in
Current site
Google Scholar
PubMed
Close
,
Gary Lackmann aNorth Carolina State University, Raleigh, North Carolina

Search for other papers by Gary Lackmann in
Current site
Google Scholar
PubMed
Close
, and
Rebecca Miller aNorth Carolina State University, Raleigh, North Carolina

Search for other papers by Rebecca Miller in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

High-impact events such as heat waves and droughts are often associated with persistent positive geopotential height anomalies (PAs). Understanding how PA activity will change in a future warmer climate is therefore fundamental to projecting associated changes in weather and climate extremes. This is a complex problem because the dynamics of PAs and their associated blocking activity are still poorly understood. Furthermore, climate change influences on PA activity may be geographically dependent and encompass competing influences. To expose the salient impacts of climate change, we use an oceanic channel configuration of the Weather Research and Forecasting Model in a bivariate experiment focused on changes in environmental temperature, moisture, and baroclinicity. The 500-hPa wind speed and flow variability are found to increase with increasing temperature and baroclinicity, driven by increases in latent heat release and a stronger virtual temperature gradient. Changes to 500-hPa sinuosity are negligible. PAs are objectively identified at the 500-hPa level using an anomaly threshold method. When using a fixed threshold, PA trends indicate increased activity and strength with warming but decreased activity and strength with Arctic amplification. Use of a climate-relative threshold hides these trends and highlights the importance of accurate characterization of the mean flow. Changes in PA activity mirror corresponding changes in 500-hPa flow variability and are found to be attributable to changes in three distinct dynamical mechanisms: baroclinic wave activity, virtual temperature effects, and latent heat release.

Robinson’s ORCID: 0000-0002-6669-7408.

Lackmann’s ORCID: 0000-0001-9069-1228.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gregory Tierney, getierne@ncsu.edu

Abstract

High-impact events such as heat waves and droughts are often associated with persistent positive geopotential height anomalies (PAs). Understanding how PA activity will change in a future warmer climate is therefore fundamental to projecting associated changes in weather and climate extremes. This is a complex problem because the dynamics of PAs and their associated blocking activity are still poorly understood. Furthermore, climate change influences on PA activity may be geographically dependent and encompass competing influences. To expose the salient impacts of climate change, we use an oceanic channel configuration of the Weather Research and Forecasting Model in a bivariate experiment focused on changes in environmental temperature, moisture, and baroclinicity. The 500-hPa wind speed and flow variability are found to increase with increasing temperature and baroclinicity, driven by increases in latent heat release and a stronger virtual temperature gradient. Changes to 500-hPa sinuosity are negligible. PAs are objectively identified at the 500-hPa level using an anomaly threshold method. When using a fixed threshold, PA trends indicate increased activity and strength with warming but decreased activity and strength with Arctic amplification. Use of a climate-relative threshold hides these trends and highlights the importance of accurate characterization of the mean flow. Changes in PA activity mirror corresponding changes in 500-hPa flow variability and are found to be attributable to changes in three distinct dynamical mechanisms: baroclinic wave activity, virtual temperature effects, and latent heat release.

Robinson’s ORCID: 0000-0002-6669-7408.

Lackmann’s ORCID: 0000-0001-9069-1228.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gregory Tierney, getierne@ncsu.edu
Save
  • Ahmadi-Givi, F., G. C. Graig, and R. S. Plant, 2004: The dynamics of a midlatitude cyclone with very strong latent-heat release. Quart. J. Roy. Meteor. Soc., 130, 295323, https://doi.org/10.1256/qj.02.226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 228232, https://doi.org/10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., L. M. Polvani, and A. H. Sobel, 2013: Model projections of atmospheric steering of Sandy-like superstorms. Proc. Natl. Acad. Sci. USA, 110, 15 21115 215, https://doi.org/10.1073/pnas.1308732110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., R. García-Herrera, and R. M. Trigo, 2010: Application of blocking diagnosis methods to general circulation models. Part I: A novel detection scheme. Climate Dyn., 35, 13731391, https://doi.org/10.1007/s00382-010-0767-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., E. M. Fischer, J. Luterbacher, R. M. Trigo, and R. García-Herrera, 2011: The hot summer of 2010: Redrawing the temperature record map of Europe. Science, 332, 220224, https://doi.org/10.1126/science.1201224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berckmans, J., T. Woollings, M.-E. Demory, P.-L. Vidale, and M. Roberts, 2013: Atmospheric blocking in a high resolution climate model: Influences of mean state, orography and eddy forcing. Atmos. Sci. Lett., 14, 3440, https://doi.org/10.1002/asl2.412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackport, R., and J. A. Screen, 2020: Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Sci. Adv., 6, eaay2880, https://doi.org/10.1126/sciadv.aay2880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, J. F., S. Wang, and L. M. Polvani, 2013: Midlatitude storms in a moister world: Lessons from idealized baroclinic life cycle experiments. Climate Dyn., 41, 787802, https://doi.org/10.1007/s00382-012-1472-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448, https://doi.org/10.1175/2008JCLI2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cattiaux, J., Y. Peings, D. Saint-Martin, N. Trou-Kechout, and S. J. Vavrus, 2016: Sinuosity of midlatitude atmospheric flow in a warming world. Geophys. Res. Lett., 43, 82598268, https://doi.org/10.1002/2016GL070309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chagnon, J. M., S. L. Gray, and J. Methven, 2013: Diabatic processes modifying potential vorticity in a North Atlantic cyclone. Quart. J. Roy. Meteor. Soc., 139, 12701282, https://doi.org/10.1002/qj.2037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, P. W., P. Hassanzadeh, and Z. Kuang, 2019: Evaluating indices of blocking anticyclones in terms of their linear relations with surface hot extremes. Geophys. Res. Lett., 46, 49044912, https://doi.org/10.1029/2019GL083307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheung, H. H. N., and W. Zhou, 2015: Implications of Ural blocking for East Asian winter climate in CMIP5 GCMs. Part I: Biases in the historical scenario. J. Climate, 28, 22032216, https://doi.org/10.1175/JCLI-D-14-00308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheung, H. H. N., W. Zhou, Y. Shao, W. Chen, H.-Y. Mok, and M. C. Wu, 2013: Observational climatology and characteristics of wintertime atmospheric blocking over Ural–Siberia. Climate Dyn., 41, 6379, https://doi.org/10.1007/s00382-012-1587-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Croci-Maspoli, M., and H. C. Davies, 2009: Key dynamical features of the 2005/06 European winter. Mon. Wea. Rev., 137, 664678, https://doi.org/10.1175/2008MWR2533.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Andrea, F., and Coauthors, 1998: Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Climate Dyn., 14, 385407, https://doi.org/10.1007/s003820050230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., and C. Cagnazzo, 2014: On the misinterpretation of the North Atlantic Oscillation in CMIP5 models. Climate Dyn., 43, 14971511, https://doi.org/10.1007/s00382-013-1970-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., and F. D’Andrea, 2016: Northern Hemisphere atmospheric blocking representation in global climate models: Twenty years of improvements? J. Climate, 29, 88238840, https://doi.org/10.1175/JCLI-D-16-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 19291953, https://doi.org/10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., M. T. Stoelinga, and Y.-H. Kuo, 1993: The integrated effect of condensation in numerical simulations of extratropical cyclogenesis. Mon. Wea. Rev., 121, 23092330, https://doi.org/10.1175/1520-0493(1993)121<2309:TIEOCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Vries, H., T. Woollings, J. Anstey, R. Haarsma, and W. Hazeleger, 2013: Atmospheric blocking and its relation to jet changes in a future climate. Climate Dyn., 41, 26432654, https://doi.org/10.1007/s00382-013-1699-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dole, R. M., and N. D. Gordon, 1983: Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Geographical distribution and regional persistence characteristics. Mon. Wea. Rev., 111, 15671586, https://doi.org/10.1175/1520-0493(1983)111<1567:PAOTEN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dole, R. M., and Coauthors, 2011: Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett., 38, L06702, https://doi.org/10.1029/2010GL046582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., C. Mitra, S. Greer, and E. Burt, 2018: The dynamical linkage of atmospheric blocking to drought, heatwave and urban heat island in southeastern US: A multi-scale case study. Atmosphere, 9, 33, https://doi.org/10.3390/atmos9010033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 14931513, https://doi.org/10.1175/1520-0493(1993)121<1493:ANVOTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett., 10, 014005, https://doi.org/10.1088/1748-9326/10/1/014005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and Coauthors, 2011: The key role of diabatic processes in modifying the upper-tropospheric wave guide: A North Atlantic case-study. Quart. J. Roy. Meteor. Soc., 137, 21742193, https://doi.org/10.1002/qj.891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassanzadeh, P., Z. Kuang, and B. F. Farrell, 2014: Responses of midlatitude blocks and wave amplitude to changes in the meridional temperature gradient in an idealized dry GCM. Geophys. Res. Lett., 41, 52235232, https://doi.org/10.1002/2014GL060764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, D., T. Parker, T. Woollings, B. Harvey, and L. Shaffrey, 2016: The response of high-impact blocking weather systems to climate change. Geophys. Res. Lett., 43, 72507258, https://doi.org/10.1002/2016GL069725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitano, Y., and T. J. Yamada, 2016: Relationship between atmospheric blocking and cold day extremes in current and RCP8.5 future climate conditions over Japan and the surrounding area. Atmos. Sci. Lett., 17, 616622, https://doi.org/10.1002/asl.711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D. Y., and J. B. Ahn, 2017: Future change in the frequency and intensity of wintertime North Pacific blocking in CMIP5 models. Int. J. Climatol., 37, 27652781, https://doi.org/10.1002/joc.4878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 40744079, https://doi.org/10.1073/pnas.1114910109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, https://doi.org/10.1111/j.2153-3490.1955.tb01148.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marciano, C. G., G. M. Lackmann, and W. A. Robinson, 2015: Changes in U.S. East Coast cyclone dynamics with climate change. J. Climate, 28, 468484, https://doi.org/10.1175/JCLI-D-14-00418.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masato, G., B. J. Hoskins, and T. Woollings, 2013: Winter and summer Northern Hemisphere blocking in CMIP5 models. J. Climate, 26, 70447059, https://doi.org/10.1175/JCLI-D-12-00466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsueda, M., 2011: Predictability of Euro-Russian blocking in summer of 2010. Geophys. Res. Lett., 38, L06801, https://doi.org/10.1029/2010GL046557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsueda, M., and H. Endo, 2017: The robustness of future changes in Northern Hemisphere blocking: A large ensemble projection with multiple sea surface temperature patterns. Geophys. Res. Lett., 44, 51585166, https://doi.org/10.1002/2017GL073336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R. L., G. M. Lackmann, and W. A. Robinson, 2020: A new variable-threshold persistent anomaly index: Northern Hemisphere anomalies in the ERA-Interim reanalysis. Mon. Wea. Rev., 148, 4362, https://doi.org/10.1175/MWR-D-19-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869873, https://doi.org/10.1038/ngeo2277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikulin, G., E. Kjellstrom, U. Hansson, G. Strandberg, and A. Ullerstig, 2011: Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus, 63A, 4155, https://doi.org/10.1111/j.1600-0870.2010.00466.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oort, A. H., and J. P. Peixoto, 1983: Global angular momentum and energy balance requirements from observations. Advances in Geophysics, Vol. 25, Academic Press, 355–490, https://doi.org/10.1016/S0065-2687(08)60177-6.

    • Crossref
    • Export Citation
  • Overland, J. E., and M. Wang, 2010: Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus, 62A (1), 19, https://doi.org/10.1111/j.1600-0870.2009.00421.x.

    • Search Google Scholar
    • Export Citation
  • Pachauri, R. K., and Coauthors, 2014: Climate Change 2014: Synthesis Report. Cambridge University Press, 151 pp., https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf.

    • Search Google Scholar
    • Export Citation
  • Pall, P., M. R. Allen, and D. A. Stone, 2007: Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dyn., 28, 351363, https://doi.org/10.1007/s00382-006-0180-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, T. J., G. J. Berry, and M. J. Reeder, 2013: The influence of tropical cyclones on heat waves in southeastern Australia. Geophys. Res. Lett., 40, 62646270, https://doi.org/10.1002/2013GL058257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., C. Schwierz, M. Croci-Maspoli, C. M. Grams, and H. Wernli, 2015: Importance of latent heat release in ascending air streams for atmospheric blocking. Nat. Geosci., 8, 610614, https://doi.org/10.1038/ngeo2487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and J. G. Esler, 2007: Transport and mixing of chemical air masses in idealized baroclinic life cycles. J. Geophys. Res., 112, D23102, https://doi.org/10.1029/2007JD008555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., A. J. Simmons, M. D. Albright, and P. Unden, 1988: The role of latent heat release in explosive cyclogenesis: Three examples based on ECMWF operational forecasts. Wea. Forecasting, 3, 217229, https://doi.org/10.1175/1520-0434(1988)003<0217:TROLHR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sausen, R., W. Koenig, and F. Sielmann, 1995: Analysis of blocking events from observations and ECHAM model simulations. Tellus, 47A, 421438, https://doi.org/10.3402/tellusa.v47i4.11526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiemann, R., and Coauthors, 2017: The resolution sensitivity of Northern Hemisphere blocking in four 25-km atmospheric global circulation models. J. Climate, 30, 337358, https://doi.org/10.1175/JCLI-D-16-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiemann, R., and Coauthors, 2020: Northern Hemisphere blocking simulation in current climate models: Evaluating progress from the Climate Model Intercomparison Project Phase 5 to 6 and sensitivity to resolution. Wea. Climate Dyn., 1, 277292, https://doi.org/10.5194/wcd-1-277-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., P. A. O’Gorman, and X. J. Levine, 2010: Water vapor and the dynamics of climate changes. Rev. Geophys., 48, RG3001, https://doi.org/10.1029/2009RG000302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwierz, C. B., 2001: Interactions of Greenland-scale orography and extra-tropical synoptic-scale flow. Ph.D. thesis, ETH Zurich, 160 pp.

  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2013: Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett., 40, 959964, https://doi.org/10.1002/grl.50174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 8596, https://doi.org/10.1016/j.gloplacha.2011.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillmann, J., and M. Croci-Maspoli, 2009: Present and future atmospheric blocking and its impact on European mean and extreme climate. Geophys. Res. Lett., 36, L10702, https://doi.org/10.1029/2009GL038259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Steinfeld, D., and S. Pfahl, 2019: The role of latent heating in atmospheric blocking dynamics: A global climatology. Climate Dyn., 53, 61596180, https://doi.org/10.1007/s00382-019-04919-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., 1996: A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124, 849874, https://doi.org/10.1175/1520-0493(1996)124<0849:APVBSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sussman, H. S., A. Raghavendra, P. E. Roundy, and A. Dai, 2020: Trends in northern midlatitude atmospheric wave power from 1950 to 2099. Climate Dyn., 54, 29032918, https://doi.org/10.1007/s00382-020-05143-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343365, https://doi.org/10.3402/tellusa.v42i3.11882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tierney, G., D. J. Posselt, and J. F. Booth, 2018: An examination of extratropical cyclone response to changes in baroclinicity and temperature in an idealized environment. Climate Dyn., 51, 38293846, https://doi.org/10.1007/s00382-018-4115-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tierney, G., D. J. Posselt, and J. F. Booth, 2019: The impact of Coriolis approximations on the environmental sensitivity of idealized extratropical cyclones. Climate Dyn., 53, 70657080, https://doi.org/10.1007/s00382-019-04976-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tilly, D. E., A. R. Lupo, C. J. Melick, and P. S. Market, 2008: Calculated height tendencies in two Southern Hemisphere blocking and cyclone events: The contribution of diabatic heating to block intensification. Mon. Wea. Rev., 136, 35683578, https://doi.org/10.1175/2008MWR2374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogel, M. M., R. Orth, F. Cheruy, S. Hagemann, R. Lorenz, B. J. J. M. van den Hurk, and S. I. Seneviratne, 2017: Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophys. Res. Lett., 44, 15111519, https://doi.org/10.1002/2016GL071235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and L. M. Polvani, 2011: Double tropopause formation in idealized baroclinic life cycles: The key role of an initial tropopause inversion layer. J. Geophys. Res., 116, D05108, https://doi.org/10.1029/2010JD015118.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and C. A. Davis, 1994: Cyclogenesis in a saturated environment. J. Atmos. Sci., 51, 889908, https://doi.org/10.1175/1520-0469(1994)051<0889:CIASE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willison, J., W. A. Robinson, and G. M. Lackmann, 2013: The importance of resolving mesoscale latent heating in the North Atlantic storm track. J. Atmos. Sci., 70, 22342250, https://doi.org/10.1175/JAS-D-12-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wirth, V., M. Riemer, E. K. Chang, and O. Martius, 2018: Rossby wave packets on the midlatitude waveguide—A review. Mon. Wea. Rev., 146, 19652001, https://doi.org/10.1175/MWR-D-16-0483.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., A. Hannachi, and B. Hoskins, 2010: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856868, https://doi.org/10.1002/qj.625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., and Coauthors, 2018: Blocking and its response to climate change. Curr. Climate Change Rep., 4, 287300, https://doi.org/10.1007/s40641-018-0108-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513, https://doi.org/10.1175/MWR-D-10-05091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 458 0 0
Full Text Views 1151 562 51
PDF Downloads 731 163 28